Phân tích các đa thức sau thành nhân tử:
1.x^2-xz+x-z
2.xz+yz-7(x+y)
3.7x^2-7xy-4x+4y
4.x^2+6x-y^2+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)
\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)
2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)
3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)
\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)
4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)
\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)
\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)
\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)
1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )
2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )
3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )
4) xy( x + y ) - yz( y + z ) + xz( x - z )
= x2y + xy2 - y2z - yz2 + xz( x - z )
= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )
= y( x2 - z2 ) + y2( x - z ) + xz( x - z )
= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )
= ( x - z )[ y( x + z ) + y2 + xz ]
= ( x - z )( xy + yz + y2 + xz )
= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]
= ( x - z )[ y( x + y ) + z( x + y ) ]
= ( x - z )( x + y )( y + z )
5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )
\(a,49.\left(y-4\right)^2-9y^2-36y-36=49\left(y-4\right)^2-9\left(y^2+4y+4\right)\)
\(=49\left(y-4\right)^2-9\left(y+4\right)^2=\left(7y-28\right)^2-\left(3y+12\right)^2\)
\(=\left(7y-28+3y+12\right)\left(7y-28-3y-12\right)\)
\(=\left(10y-16\right)\left(4y-40\right)=8\left(5y-8\right)\left(y-10\right)\)
\(b,xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz-xz+x+y+z-1\)
\(=\left(xyz-xy\right)-\left(xz-x\right)-\left(yz-y\right)+\left(z-1\right)\)
\(=xy\left(z-1\right)-x\left(z-1\right)-y\left(z-1\right)+\left(z-1\right)\)
\(=\left(z-1\right)\left(xy-x-y+1\right)\)
\(=\left(z-1\right)\text{[}x\left(y-1\right)-\left(y-1\right)\text{]}\)
\(=\left(z-1\right)\left(y-1\right)\left(x-1\right)\)
\(\begin{array}{l}a)\,{x^2} - 6x + 9 - {y^2} \\= \left( {{x^2} - 6x + 9} \right) - {y^2} \\= {\left( {x - 3} \right)^2} - {y^2} \\= \left( {x - 3 + y} \right)\left( {x - 3 - y} \right);\\b)\,4{x^2} - {y^2} + 4y - 4 = {\left( {2x} \right)^2} - \left( {{y^2} - 4y + 4} \right) \\= {\left( {2x} \right)^2} - {\left( {y - 2} \right)^2} \\= \left( {2x - y + 2} \right)\left( {2x + y - 2} \right);\\c)\,xy + {z^2} + xz + yz \\= \left( {xy + xz} \right) + \left( {{z^2} + yz} \right) \\= x\left( {y + z} \right) + z\left( {z + y} \right) \\= \left( {y + z} \right)\left( {x + z} \right);\\d)\,{x^2} - 4xy + 4{y^2} + xz - 2yz \\= \left( {{x^2} - 4xy + 4{y^2}} \right) + \left( {xz - 2yz} \right) \\= {\left( {x - 2y} \right)^2} + z\left( {x - 2y} \right) \\= \left( {x - 2y} \right)\left( {x - 2y + z} \right).\end{array}\)
Bài `1`
\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)
Bài `3`
\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)
\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)
a, \(x^2-xz+x-z=x\left(x-z\right)+x-z=\left(x+1\right)\left(x-z\right)\)
b, \(xz+yz-7\left(x+y\right)=z\left(x+y\right)-7\left(x+y\right)=\left(z-7\right)\left(x+y\right)\)
c, \(7x^2-7xy-4x+4y=7x\left(x-y\right)-4\left(x-y\right)=\left(7x-4\right)\left(x-y\right)\)
d, \(x^2+6x-y^2+9=\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
địt ko em