Tính \(\frac{1}{2016}\)+\(\frac{2017.2015}{2016}\)-2016
mọi người giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\frac{2017.2015+2017-1}{2017.2015+2016}=\frac{2017.2015+2016}{2017.2015+2016}=1\)1
A=\(\frac{2017.2016-1}{2017\left(2015+1\right)+2016-2015}\)
A=\(\frac{2017.2016-1}{2017.2016+1}\)
A=\(\frac{-1}{1}\)
Ta có \(S=\frac{2016}{5}+\frac{2016}{10}+\frac{2016}{30}+...+\frac{2016}{47530}+\frac{2016}{48150}\)
\(=\frac{2016}{5}.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9506}+\frac{1}{9630}\right)\)
\(=\frac{2016}{5}.\left(\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{2016}{5}.\left(\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{2016}{5}.\left(1+1-\frac{1}{99}\right)\)
\(=\frac{2016}{5}.\frac{197}{99}\)
\(=\frac{44128}{55}\)
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)
\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)
Thay \(2016=xyz\)vào biểu thức ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)
Vậy \(A=1\)
Vì \(xyz=2016\)
\(\Rightarrow A=\frac{2016x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
\(=\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)
Đề viết sai nha bạn phải là \(-\frac{2015^2}{2016^2}\)
\(=\sqrt{1+2015^2-\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(=\sqrt{\left(1+2015-\frac{2015}{2016}\right)^2}+\frac{2015}{2016}\)
\(=1+2015-\frac{2015}{2016}+\frac{2015}{2016}\)
\(=2016\)
tick cho mình nha
\(\frac{1}{2016}+\frac{2017\cdot2015}{2016}-2016\)
\(=\frac{1}{2016}+\frac{\left(2016+1\right)\left(2016-1\right)}{2016}-2016\)
\(=\frac{1}{2016}+\frac{2016^2-1}{2016}-2016\)
\(=\frac{1+2016^2-1-2016^2}{2016}=\frac{0}{2016}=0\)