Phân tích đa tử thành nhân tử
\(\left(x^2+x-1\right)\left(x^2+x+2\right)-12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
Bạn nên tách bài ra để đăng. Không nên đăng 1 loạt như thế này.
1: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
=(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
2: \(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax\right)^2+10a^2\left(x^2+5ax\right)+25a^2\)
\(=\left(x^2+5ax+5a^2\right)^2\)
3: \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
5: \(M=\left(n+1\right)\left(n^2+2n\right)+360\)
=n(n+1)(n+2)+360 chia hết cho 6
6A
7D
Sai đề rồi đa thức này không có nghiêm làm sao phân tích được
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)
\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
Đặt t=\(x^2+x\)
\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)
Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)
\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(=2.\left[x^4+x^2+1+2x^3+2x+2x^2\right]-\left(4x^2+4x+1\right)-\left(x^4+4x^3+4x^2\right)\)
\(=x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
Chúc bạn học tốt.
sai đề
Sai đề nhé bạn
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
Đa thức trở thành \(t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+3t-4t-12\)
\(=t\left(t+3\right)-4\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)
Thay vào ta được
\(\left(x^2+x+4\right)\left(x^2+x-3\right)\)