Phân tích đa thức thành nhân tử :
x( y^2 - z^2 ) + y( z^2 - x^2 ) + z( x^2 - y^2 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2(y - z) + y2(z - x) + z2(x - y)
= z2(x - y) + x2 y - x2 z + y2 z - y2 x
= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)
= (x - y)(z2 + xy - zx - zy)
= (x - y)[(z2 - zx) + (xy - zy)]
= (x - y)(z - x)(z -y)
Ta có: \(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=x\left(y-z\right)\left(y+z\right)+yz^2-x^2y+zx^2-y^2z\)
\(=x\left(y-z\right)\left(y+z\right)-\left(y^2z-yz^2\right)-\left(x^2y-zx^2\right)\)
\(=x\left(y-z\right)\left(y+z\right)-yz\left(y-z\right)-x^2\left(y-z\right)\)
\(=\left(y-z\right)\left(xy+zx-yz-x^2\right)\)
\(=\left(y-z\right)\left[\left(zx-yz\right)-\left(x^2-xy\right)\right]\)
\(=\left(y-z\right)\left[z\left(x-y\right)-x\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left[\left(z-y\right)+\left(y-x\right)\right]\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-y\right)-x^2z^2\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2y^2-x^2z^2\right)+\left(z-y\right)\left(y^2z^2-x^2z^2\right)\)
\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(y+x\right)\)
\(=\left(y-x\right)\left(z-y\right)\left(-x^2y-x^2z+z^2y+z^2x\right)\)
\(=\left(y-x\right)\left(z-y\right)\left[xz\left(z-x\right)+y\left(z-x\right)\left(z+x\right)\right]\)
\(=\left(y-x\right)\left(z-y\right)\left(z-x\right)\left(xy+yz+xz\right)\)
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=x\left(y^2-z^2\right)-y\left(y^2-z^2+x^2-y^2\right)+z\left(x^2-y^2\right)\)
\(=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
chúc bn hc tốt ^^
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
Ta có :
P = x2 . ( y - z ) + y2z - xy2 + xz2 - yz2
= x2 . ( y - z ) + yz . ( y - z ) - x . ( y2 - z2 )
= ( y - z ) . ( x2 + yz - xy - xz )
= ( y - z ) . [ x . ( x- y ) - z . ( x - y ) ]
= ( y - z ) . ( x - y ) . ( x - z )
\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left[-\left(z^2-x^2\right)-\left(x^2-y^2\right)\right]+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=-x\left(z^2-x^2\right)+y\left(z^2-x^2\right)-x\left(x^2-y^2\right)+z\left(x^2-y^2\right)\)
\(=\left(z^2-x^2\right)\left(y-x\right)+\left(x^2-y^2\right)\left(z-x\right)\)
\(=\left(y-x\right)\left(z-x\right)\left(z+x\right)+\left(z-x\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(z-x\right)\left(x+y-z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)