tìm x.y thuộc N để biểu thức A= (n^2 - n)^2 - 36n^2 để n có giá trị là một số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\left(n^2+10\right)^2-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Vì \(n\in N\Rightarrow n^2+6n+10\ge10\)
Điều kiện cần để A là số nguyên tố:
\(n^2-6n+10=1\)
\(\Rightarrow n^2-6n+9=0\)
\(\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)
Ta phải thử lại:
\(A=\left(n^2+10\right)^2-36n^2=\left(3^2+10\right)^2-36.3^2=19^2-324=37\)
Vì 37 là số nguyên tố nên n = 3 thỏa mãn đề bài.
Để A=\(\frac{2}{n+1}\)có giá trị nguyên =>2 phải chia hết cho n-1 =>n-1\(\in\)Ư(2)=(1;-1;2;-2)
Xét: n-1=1=>n=2(thỏa mãn)
n-1=-1=>n=0(thỏa mãn)
n-1=2=>n=3(thỏa mãn)
N-1=-2=>n=-1(thỏa mãn)
Vậy các giá trị của n để A=\(\frac{2}{n+1}\)có giá trị nguyên là 2;0;-3;-1
Ta có : \(A=3n^2-16n-12\)
\(=3n\left(n-6\right)+2\left(n-6\right)\)
\(=\left(n-6\right)\left(3n+2\right)\)
Vì n là số nguyên dương nên \(n-6< 3n+2\)
Vì A là số nguyên tố nên A chỉ có 2 ước nguyên dương là 1 và chính A
\(\Rightarrow n-6=1\)
\(\Rightarrow n=7\)
Thử lại : Thay n vào A ta được :
\(A=\left(7-6\right)\left(3.7+2\right)=23\)(là số nguyên tố)
Vậy n=6 thì A là số nguyên tố .
- Nếu n chẵn thì \(\left(n^2+1\right)3n\) chẵn, mà \(6\left(n^2+1\right)\) chẵn nên A chẵn
- Nếu n lẻ thì \(\left(n^2+1\right)3n\) chẵn, mà \(6\left(n^2+1\right)\) chẵn nên A chẵn
Do đó \(\forall n\in N\) thì A chẵn, mà A là số nguyên tố => A = 2
Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)
\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)
\(\Leftrightarrow3n^3-6n^2+3n-8=0\)
Mà \(n\in N\) nên ko tìm đc giá trị của n để A là số nguyên tố.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Với \(n=0\Rightarrow B=100\left(hs\right)\)
Với \(n\ne0\) ta có:
\(B=\left(n^2+10\right)^2-36n^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để B là số nguyên tố thì \(n^2-6n+10\) hoặc \(n^2+6n+10\) bằng 1.
Mà \(n\in N;n\ne0\Rightarrow n^2-6n+10< n^2+6n+10\)
\(\Rightarrow n^2-6n+10=1\Rightarrow n^2-6n+9=0\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)
Thử n=3 vào B ta được:
\(B=\left(3^2+10\right)^2-36\cdot3^2=19^2-324=37\) là số nguyên tố (TM)
Vậy \(n=3\)