tìm bốn số tự nhiên liên tiếp sao cho lập phương của một số bằng tổng các lập phương của ba số kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số tự nhiên đó lần lượt là a-2,a-1,a,a+1
ta có (a-2)3+(a-1)3+a3=(a+1)3
khai triển rồi rút gọn ta được 2a3-12a2+12a-10=0
<=>2a3-10a2-2a2+10a+2a-10=0
<=>2a2(a-5)-2a(a-5)+2(a-5)=0
<=>(a-5)(2a2-2a+2)=0
<=>(a-5)(a2-a+1)=0
<=>a-5=0<=>a=5 (vì a2-a+1=(a-1/2)2+3/4>0 với mọi a)
Vậy 4 số tự nhiên liên tiếp cần tìm là 3;4;5;6
hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta dc điều phải chứng minh
gọi ba số tự nhiên đó là a,a+1,a+2
theo bài ta có
(a+a+1+a+2)3
=(a+a+a+1+2)3
=(a+a+a+3)3
=(a+a+a)3+27
mà (a+a+a)3 chia hết cho 3
nên (a+a+a)3 chia het cho 9
do 27 chia het cho 9
nen (a+a+a)3+27 chia het cho 9
vậy ............................
Giải tìm số nguyên dương nhỏ nhất
Tìm x nguyên dương nhỏ nhất sao cho: x=3a^3=4b^4 (1), a, b thuộc N
Xét \(3.a^3=4.b^4\Rightarrow\hept{\begin{cases}b^4⋮3\\a^3⋮2\end{cases}\Rightarrow\hept{\begin{cases}b⋮3\\a⋮2\end{cases}\Rightarrow}}\hept{\begin{cases}b=3h\\a=2k\end{cases}}\), h, k thuộc N
=> \(3.\left(2k\right)^3=4.\left(3h\right)^4\Rightarrow2k^3=27h^4\Rightarrow h⋮2\Rightarrow h=2t\)với t thuộc N
=> \(2k^3=27.\left(2t\right)^4\Rightarrow k^3=6^3.t^4\)(2)
Vì x là số nguyên dương nhỏ nhất thỏa mãn (1)=> t là số nguyên dương nhỏ nhất thỏa mãn (2) => t=1=> k=6, h=2 thỏa mãn
=> a=12, b=6 (thỏa mãn)=> x=3. 12^3=4.6^4=5184.
Có bạn nào tìm được số nhỏ hơn không ??? :)
Gọi 4 số tự nhiên liên tiếp đó là: n-1;n;n+1;n+2 (n>0)
theo đề lập phương của một số bằng tổng các lập phương của 3 số kia
=>số mà lập phương lên bằng tổng các lập phương của 3 số kia phải lớn nhất
=>số đó là n+2
Ta có phương trình:
(n+2)3=n3+(n-1)3+(n+1)3
<=>n3+6n2+12n+8=n3+n3-3n2+3n-1+n3+3n2+3n+1
<=>n3+6n2+12n+8=3n3+6n
<=>3n3-n3-6n2+6n-12n-8=0
<=>2n3-6n2-6n-8=0
<=>2n3-8n2+2n2-8n+2n-8=0
<=>2n2.(n-4)+2n.(n-4)+2.(n-4)=0
<=>2.(n-4)(n2+n+1)=0
Vì n2+n+1\(\ge\)0 với mọi x nên:
n-4=0
<=>n=4
Vậy 4 số cần tìm là: 3;4;5;6