Cho A = \(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
Chứng minh A chia hết cho 31.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
\(P=2\left[\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)\right]\)
\(P=2\left[\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)\right]\)
\(P=2\left(2^5+1\right)\left(1+2+2^2+2^3+2^4\right)\)
Mà: \(1+2+2^2+2^3+2^4=31\Rightarrow P⋮31\left(đpcm\right)\)
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự
Có: A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )
còn lại tự lm