5/42 - x = 551/364
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(12000+X):376=X
12000+X=376 x X
12000=376 x X - X
12000=375 x X
X=12000:375= 32
[(x + 32) - 17] . 2 = 42
(x + 32) - 17 = 42 : 2
(x + 32) - 17 = 21
x + 32 = 21 + 17
x + 32 = 38
x = 38 - 32
x = 6
Vậy x = 6
A)364:13=28 b) 864:27=32
C) 587:19=30,894 D) 935:42=19,8809
a) 364:13=28
b)864:27=32
c)587:19=30 và dư 17
d)935:42=22 và dư 11
sao cứ trái rồi phaỉ vậy đây có phải bài cho nhân loại làm ko zậy
Bài 1:
a, 386-287 -386 -13
= (386-386) -287-13
= 0 -300
=-300
b, =332-681 -232+431
= (332 -232) +(431-681)
= 100 - 250
= -150
Bài 2
a, = 27+65+ 364-27-65
= (27-27) +(65-65) +364
= 0+0+ 364
=364
b, = 42-69+17 -42-17
= (42-42) + (17-17) -69
= -69
chúc bạn học tốt nha!
`x^8+36x^4=0`
`<=>x^4(x^4+36)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x^4=0\\x^4+36=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^4=-36\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x\in\varnothing\end{matrix}\right.\)
__
`(x-5)^3 -x+5=0`
`<=> (x-5)^3 -(x-5)=0`
`<=> (x-5) [(x-5)^2 -1]=0`
`<=> (x-5)(x-5-1)(x-5+1)=0`
`<=>(x-5)(x-6)(x-4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
__
`5(x-2)-x^2+4=0`
`<=>5(x-2)-(x^2-4)=0`
`<=>5(x-2)-(x-2)(x+2)=0`
`<=>(x-2)(5-x-2)=0`
`<=>(x-2)(-x-3)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{1}{4};\dfrac{2}{5}\)
\(\dfrac{1}{4}=\dfrac{1\cdot5}{4\cdot5}=\dfrac{5}{20}\)
\(\dfrac{2}{5}=\dfrac{2\cdot4}{5\cdot4}=\dfrac{8}{20}\)
\(\dfrac{2}{3};\dfrac{7}{8}\)
\(\dfrac{2}{3}=\dfrac{2\cdot8}{3\cdot8}=\dfrac{16}{24}\)
\(\dfrac{7}{8}=\dfrac{7\cdot3}{8\cdot3}=\dfrac{21}{24}\)
\(\dfrac{3}{4};\dfrac{5}{6}\)
\(\dfrac{3}{4}=\dfrac{3\cdot3}{4\cdot3}=\dfrac{9}{12}\)
\(\dfrac{5}{6}=\dfrac{5\cdot2}{6\cdot2}=\dfrac{10}{12}\)
b: \(\dfrac{1}{3};\dfrac{7}{9}\)
\(\dfrac{1}{3}=\dfrac{1\cdot3}{3\cdot3}=\dfrac{3}{9}\)
\(\dfrac{7}{9}=\dfrac{7\cdot1}{9\cdot1}=\dfrac{7}{9}\)
\(\dfrac{3}{4};\dfrac{9}{24}\)
\(\dfrac{3}{4}=\dfrac{3\cdot6}{4\cdot6}=\dfrac{18}{24}\)
\(\dfrac{9}{24}=\dfrac{9\cdot1}{24\cdot1}=\dfrac{9}{24}\)
\(\dfrac{7}{10};\dfrac{19}{30}\)
\(\dfrac{7}{10}=\dfrac{7\cdot3}{10\cdot3}=\dfrac{21}{30}\)
\(\dfrac{19}{30}=\dfrac{19\cdot1}{30\cdot1}=\dfrac{19}{30}\)
Bài 1:
\(\dfrac{36}{108}=\dfrac{36:36}{108:36}=\dfrac{1}{3}\)
\(\dfrac{28}{30}=\dfrac{28:2}{30:2}=\dfrac{14}{15}\)
\(\dfrac{42}{98}=\dfrac{42:14}{98:14}=\dfrac{3}{7}\)
\(\dfrac{15}{120}=\dfrac{15:15}{120:15}=\dfrac{1}{8}\)
\(\dfrac{84}{364}=\dfrac{84:28}{364:28}=\dfrac{3}{13}\)
\(\dfrac{120}{100}=\dfrac{120:20}{100:20}=\dfrac{6}{5}\)
\(\dfrac{418}{38}=\dfrac{418:38}{38:38}=\dfrac{11}{1}=11\)
\(\dfrac{96}{1056}=\dfrac{96:96}{1056:96}=\dfrac{1}{11}\)
\(\dfrac{3838}{4040}=\dfrac{3838:101}{4040:101}=\dfrac{38}{40}=\dfrac{38:2}{40:2}=\dfrac{19}{20}\)
\(\dfrac{119119}{123123}=\dfrac{119119:1001}{123123:1001}=\dfrac{119}{123}\)
123 x 10 + 513 x 10 + 364 x 5 x 2
= 123 x 10 + 513 x 10 + 364 x 10
= 10 x ( 123 + 513 + 364 )
= 10 x 1000
= 10 000
\(318-5\left(x-64\right)=103\)
\(\Rightarrow5\left(x-64\right)=318-103\)
\(\Rightarrow5\left(x-64\right)=215\)
\(\Rightarrow x-64=43\)
\(\Rightarrow x=43+64\)
\(\Rightarrow x=107\)
_____________
\(4^x\cdot5+216=296\)
\(\Rightarrow4^x\cdot5=296-216\)
\(\Rightarrow4^x\cdot5-80\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
___________
\(376-6^x:3=364\)
\(\Rightarrow6^x:3=376-364\)
\(\Rightarrow6^x:3=12\)
\(\Rightarrow6^x=36\)
\(\Rightarrow6^x=6^2\)
\(\Rightarrow x=2\)
___________
\(\left(4x-1\right)^2=121\)
\(\Rightarrow\left(4x-1\right)^2=11^2\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=11\\4x-1=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=12\\4x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(\frac{5}{42}-x=\frac{551}{364}\)
\(\Rightarrow x=\frac{5}{42}-\frac{551}{364}\)
\(\Rightarrow x=-\frac{1523}{1092}\)
Vậy : \(x=-\frac{1523}{1092}\)