K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=-\left(x^2-2x+\left|y-3\right|-3\right)\)

\(=-\left(x^2-2x+1+\left|y-3\right|-4\right)\)

\(=-\left(x-1\right)^2-\left|y-3\right|+4\le4\forall x\)

Dấu '=' xảy ra khi x=1 và y=3

8 tháng 9 2023

Bạn xem lại đề nhé.

a) \(A=x^2+5y^2+2xy-4x-8y+2015\)

 

\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2-y\right)^2+4y^2+2011\)

Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)

\(\Rightarrow A_{min}=2011\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

21 tháng 7 2021

a, Ta có :

 \(M=4\left|x+3\right|\ge0\) với \(\forall x\)

\(\Rightarrow7-4\left|x+3\right|\le7 với \forall x\)

Dấu '' = '' xảy ra khi:

 \(\left|x+3\right|=0\\ \Rightarrow x+3=0\\ \Rightarrow x=-3\)

    Vậy GTLN của \(M=7-4\left|x+3\right|\) là  khi \(x=-3\)

21 tháng 7 2021

b,

Để \(N=\dfrac{18}{\left|x-2\right|+9}+5\) có giá trị lớn nhất thì \(\dfrac{18}{\left|x-2\right|+9}\) phải lớn nhất

\(\Rightarrow\left|x-2\right|+9\) Phải nhỏ nhất và lớn hơn 0

Ta có:

\(\left|x-2\right|\ge0 với \forall x\)

\(\Rightarrow\left|x-2\right|+9\ge0 với \forall x\)

  Dấu '' = '' xảy ra khi:

\(\left|x-2\right|=0\\ \Rightarrow x-2=0\\ \Rightarrow x=2\) 

\(\Rightarrow\dfrac{18}{\left|x-2\right|+9}+5=2+5=7\)

    Vậy GTLN của \(N=\dfrac{18}{\left|x-2\right|+9}+5\) là 7 khi \(x=2\)

30 tháng 9 2021

Bài 1:

a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)

\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)

b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)

\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Bài 2:

\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

30 tháng 9 2021

bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

6 tháng 1 2021

a)Ta có:

\(A=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)

\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\forall x\)

Vậy MaxA=-3 khi x=1

b) Ta có: \(B=4x-x^2=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4\le4\forall x\)Vậy MaxB=4 khi x=2

Sai rồi bạn

16 tháng 8 2021

undefined

16 tháng 8 2021

cám ơn nhìu ạ 

 

13 tháng 11 2023

a: \(y=\left(x^2-1\right)^2\)

=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)

\(=4x\left(x^2-1\right)\)

Đặt y'>0

=>\(x\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>\(x>1\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)

Đặt y'<0

=>\(x\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)

=>0<x<1

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>x<-1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)

Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)

b: \(y=\left(3x+4\right)^3\)

=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)

\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

c: \(y=\left(x+3\right)^2\left(x-1\right)\)

=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)

=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)

=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)

=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)

=>\(y'=3x^2-2x+3\)

\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)

=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)

=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(2x+2\right)\left(x^3-1\right)\)

=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)

\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)

\(=2x^3-2+6x^3+6x^2\)

\(=8x^3+6x^2-2\)

Đặt y'>0

=>\(8x^3+6x^2-2>0\)

=>\(x>0,46\)

Đặt y'<0

=>\(8x^3+6x^2-2< 0\)

=>\(x< 0,46\)

Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)

Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)

11 tháng 7 2017

a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)

\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)

c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow x=-\frac{3}{5}\)

12 tháng 7 2017

cảm ơn bạn nhiều nhé 

kb vs mình đi 

10 tháng 12 2023

Tọa độ giao điểm của (d1) và (d3) là:

\(\left\{{}\begin{matrix}2x-1=-x+3\\y=-x+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=4\\y=-x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{4}{3}+3=\dfrac{5}{3}\end{matrix}\right.\)

Thay x=4/3 và y=5/3 vào (d2), ta được:

\(\dfrac{4}{3}\left(2n-1\right)+\dfrac{3}{2}=\dfrac{5}{3}\)

=>\(\dfrac{8}{3}n-\dfrac{4}{3}+\dfrac{3}{2}=\dfrac{5}{3}\)

=>\(\dfrac{8}{3}n=\dfrac{5}{3}+\dfrac{4}{3}-\dfrac{3}{2}=\dfrac{3}{2}\)

=>\(n=\dfrac{3}{2}:\dfrac{8}{3}=\dfrac{3}{2}\cdot\dfrac{3}{8}=\dfrac{9}{16}\)

11 tháng 11 2016

Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)

Áp dụng vào bài toán của bạn :

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)

b/ Tương tự

c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)

d/ Tương tự

e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)

f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)

Suy ra \(y\le\frac{1}{2\sqrt{2}}\)

..........................

g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)

\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)

\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)

\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)

Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)

 

 

19 tháng 6 2018

Bạn coi lại đề giùm đi.

19 tháng 6 2018

\(18x^2-6x-9x+3-18x^2+2x-27x+3=-6.\)

\(-15x+12+2x=0\)

\(-13x=-12\Leftrightarrow x=\frac{13}{12}\)