K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

a) ta có A đối xứng với F qua O => O là trung điểm của AF 

=> BO là trung tuyến của AF (1) 

=> CO là trung tuyến của AF (2) 

ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC 

=> OA = OB =OC (3)

từ 1-2-3 => Góc ABF = góc ACF = 90 

=> AB vuông góc với FB 

AC vuông góc với FC 

mà CH vuông góc AB => CH // BF 

BH vuông góc với AC => BH//CF 

Xét tứ giác BHCF có 

CH // BF

BH//CF 

=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo 

M là trung điểm của BC 

=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM 

=> H đối xứng với F qua M 

b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF 

=> OM là đường trung bình 

=> OM =1/2AH <=> AH/OM=2

vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC

ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )

=> OM // AH => góc HAG =góc GMO (2 góc so le trong)

xét tam giác AHG và tam giác MOG 

có :góc HGA =góc  MGO (2 góc đối đỉnh)

góc HAG =góc GMO (cmt) 

=> đồng dạng (gg) => AH /OM = AG/MG =2 

<=> AG=2MG <=> AM = AG + MG =3MG

<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)

=> G là trọng tâm của tma giác ABC 

 

25 tháng 2 2022

sửa lại AM là trung tuyến nhé

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc HBC+góc HCB=90 độ-góc ABC+90 độ-góc ACB

=góc BAC

=>góc BHC=180 độ-góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng M qua BC

=>BH=BM và CH=CM

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

=>ΔBHC=ΔBMC

=>góc BMC=góc BHC

=>góc BMC+góc BAC=180 độ

=>ABMC nội tiếp

c: Xét tứ giác BHCN có

BC cắt HN tại trung điểm của mỗi đường

=>BHCN là hìnhbình hành

=>góc BHC=góc BNC

=>góc BNC+góc bAC=180 độ

=>ABNC nội tiếp

24 tháng 12 2020

d/ Xét t/g ABC cân tại A có AH là đường cao

=> AH đồng thời là đường trung tuyến

=> H là trung điểm BC

Gọi K là trung điểm AH

Có tứ giác ADHC là hình bình hành

=> AH cắt DC tại trung điểm mỗi đường.

=> AH cắt DC tại K

Hay K ∈ DCMà F là giao điểm DC và HE

=> CK cắt HE tại FXét t/g AHC có

E là trung điểm ACK là trung điểm AHCK cắt HE tại F

=> F là trọng tâm t/g AHC

=> 3EF = HE (1)Xét t/g ABC có

E là trung điểm AC (GT)H là trung điểm BC (cmt)=> HE là đườngtrung bình t/g ABC

=> HE = 1/2 AB

=> 2 HE = AB (2)Từ(1) và (2)=> AB = 6EF

24 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành