K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

nguyễn thị ngọc thơ giải hộ mik vs

30 tháng 5 2019

giúp vs

26 tháng 10 2020

\(\text{méo biết}\)

11 tháng 4 2021

= căn xy + căn x + căn y còn lại tự tính

27 tháng 9 2015

a) +) Điều kiện : x \(\ge\) 0 ; y \(\ge\) 0 ; y \(\ne\) 1 ; x; y không đồng thời bằng 0

+) \(P=\frac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{x\sqrt{x}+x-y+y\sqrt{y}-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{x+y-\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(x+\sqrt{x}\right)+\left(y-xy\right)-\left(\sqrt{xy}+\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(1+\sqrt{x}\right)\sqrt{x}+y\left(1-x\right)-\sqrt{y}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(1+\sqrt{x}\right)\left(\sqrt{x}+y-y\sqrt{x}-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-y\sqrt{x}\right)+\left(y-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)}\)

\(P=\sqrt{x}\left(1+\sqrt{y}\right)-\sqrt{y}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)

b) Để P = 2 <=> \(\sqrt{x}-\sqrt{y}+\sqrt{xy}=2\) <=> \(\sqrt{x}+\sqrt{xy}=\sqrt{y}+2\)

<=>  \(\left(\sqrt{x}+\sqrt{xy}\right)^2=\left(\sqrt{y}+2\right)^2\)

<=> \(x+xy+2x\sqrt{y}=y+4+4\sqrt{y}\)

<=> \(x+xy-y+\left(2x-4\right)\sqrt{y}=4\)(*)

P = 2 <=> (x; y) thỏa mãn (*)

1 tháng 11 2020

\(=\frac{x-2\sqrt{x}+y+2\sqrt{y}-2\sqrt{xy}+1}{x-2\sqrt{xy}+y-1}\)\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1}{\left(\sqrt{x}-\sqrt{y}\right)^2-1}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}-1\right)^2}{\left(\sqrt{x}-\sqrt{y}+1\right)\left(\sqrt{x}-\sqrt{y}-1\right)}=\frac{\sqrt{x}-\sqrt{y}-1}{\sqrt{x}-\sqrt{y}+1}\)