Tìm x, biết: //x+2/-3/=1
/ / là giá trị tuyệt đối nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{1}{2}\\x-\dfrac{1}{3}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
|x-3| = |x-2|
TH1: x-3 = x-2
=> x -x = -2 + 3
0 = 1 ( vô lí)
=> không tìm được x
TH2: x-3 = -x+2
=> x + x = 2 + 3
2x = 5
x = 5/2
KL:...
câu b lm tương tự
\(\left|x-3\right|=\left|x-2\right|\)
TH1: \(x-3=x-2\Leftrightarrow0x=1\) (vô lí)
TH2: \(x-3=-\left(x-2\right)\Leftrightarrow x-3=-x+2\Leftrightarrow2x=5\Leftrightarrow x=2,5\)
Vậy x = 2,5
\(\left|5-x\right|=\left|7-x\right|\)
TH1: \(5-x=7-x\Leftrightarrow0x=2\)(vô lí)
TH2: \(5-x=-\left(7-x\right)\Leftrightarrow5-x=x-7\Leftrightarrow-2x=-12\Leftrightarrow x=6\)
Vậy x = 6
Ta có : \(\left|x+\frac{2}{3}\right|=\frac{3}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{3}{5}\\x+\frac{2}{3}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{2}{3}\\x=-\frac{3}{5}-\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{15}\\x=-\frac{19}{15}\end{cases}}\)
/x/+2/3=3/5 hoặc /x/+2/3=-3/5
x=3/5-2/3 x=-3/5-2/3
x=-1/15 x=-19/15
/x/-2,8=1/5 hoặc /x/-2,8=-1/5
x=1/5+2,8 x=-1/5+2,8
x=3 x=13/5
/x/+1/2+3=0
x+7/2=0
x=0-7/2
x=-7/2
/2x/-3/8=0
2x=0+3/8
2x=3/8
x=3/8:2
x=3/16
2. để Bmax thì x+2/3 đạt GTNN=> x+2/3=0=>x=-2/3
3. 4x=21
4x=-21 tự tính
x-1.5=2
x-1.5=-2
x+3/4=1/2
x+3/4=-1/2
a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
*TH1: \(x< 2016\):
\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)
*TH2: \(2016\le x< 2017\):
\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)
*TH3: \(2017\le x< 2018\):
\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)
*TH4: \(x\ge2018\):
\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)
Vậy GTNN của P là 2 khi x = 2017.
b) \(x-2xy+y-3=0\)
\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
2x-1 | 5 | -5 | 1 | -1 |
1-2y | 1 | -1 | 5 | -5 |
x | 3 | -2 | 1 | 0 |
y | 0 | 1 | -2 | 3 |
\(\left|\left|x+2\right|-3\right|=1\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left|x+2\right|-3=1\\3-\left|x+2\right|=1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left|x+2\right|=4\\\left|x+2\right|=2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=4\\x+2=-4\\x+2=2\\x+2=-2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-6\\x=0\\x=-4\end{array}\right.\)
Vậy \(x\in\left\{-6;-4;2;0\right\}\)
|| x + 2 | - 3 | = 1
\(\Rightarrow\left|x+2\right|-3=\pm1\)
Xét \(\left|x+2\right|-3=1\Rightarrow\left|x+2\right|=4\)
\(\Rightarrow x+2=\pm4\)
+) \(x+2=4\Rightarrow x=2\)
+) \(x+2=-4\Rightarrow x=-6\)
Xét \(\left|x+2\right|-3=-1\Rightarrow\left|x+2\right|=2\)
\(\Rightarrow x+2=\pm2\)
+) \(x+2=2\Rightarrow x=0\)
+) \(x+2=-2\Rightarrow x=-4\)
Vậy \(x\in\left\{2;-6;0;-4\right\}\)