Tìm các số a.b.c biết : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}vàa-3b+2c=30\)
Cho hình vẽ.Biết đường thẳng c vuông góc với đường thàng a và b. Góc A1bằng 500,góc B1 bằng 400.
a. Chúng minh rằng : a//b
b. Tính số đo góc ACB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A
b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)
=> tam giác DCO đồng dạng với tam giác DBA
=> DC/DB = DO/DA
=> DC.DA = DO.DB (đpcm)
c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)
Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM
Theo Viet ta có: DA/DM = AB/MO
=> AM/DM + 1 = AB/OM
=> AB/OM - AM/DM = 1 (*)
Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)
=> OM = AM
(*) trở thành: AB/AM - AM/DM = 1 (đpcm)
Bạn có thể vẽ ra tập rồi trả lời câu hỏi mới dễ bạn à.
Còn trên đây mk ko biết vẽ hình.
Hoặc bạn có thể vào học 24 hoặc câu hỏi tương tự tham khảo.
Chúc bạn học tốt !
Câu 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{3b}{9}=\frac{2c}{8}=\frac{a-3b+2c}{2-9+8}=\frac{30}{1}=30\)
\(\Rightarrow\begin{cases}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{4}=30\end{cases}\)\(\Rightarrow\begin{cases}a=60\\b=90\\c=120\end{cases}\)