viết mỗi biểu thức sau dưới dạng tổng của hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b ) x2 - 2xy + 2y2 + 2y + 1
c ) z2 - 6z + 13 + t2 + 4t
d ) 4x2 + 2z2 - 4xz - 2z + 1
giúp mình với nhé mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $x^2+y^2+4y+13-6x$
$=(x^2-6x+9)+(y^2+4y+4)$
$=(x-3)^2+(y+2)^2$
b.
$4x^2-4xy+1+2y^2-2y$
$=(4x^2-4xy+y^2)+(y^2-2y+1)$
$=(2x-y)^2+(y-1)^2$
c.
$x^2-2xy+2y^2+2y+1$
$=(x^2-2xy+y^2)+(y^2+2y+1)$
$=(x-y)^2+(y+1)^2$
a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
\(a.\)
\(z^2-6z+5-t^2-4t\)
\(=z^2-6z+9-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(b.\)
\(4x^2-12x-y^2+2y+1\)
Câu này đề sai sao ấy em !
b, mik nghĩ đề sửa thành: \(4x^2-12x-y^2+2y+8\)
\(=4x^2-12x+9-y^2+2y-1\)
\(=\left(2x\right)^2-2.2.3.x+3^2-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
1) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x2 + 5x + 5x + 25) + (y2 + y + y + 1)
= x(x + 5) + 5(x + 5) + y(y + 1) + (y + 1)
= (x + 5)2 + (y + 1)2
2) z2 - 6z + 13 + t2 + 4t
= (z2 - 6z + 9) + (t2 + 4t + 4)
= (z2 - 3z - 3z + 9) + (t2 + 2t + 2t + 4)
= z(z - 3) - 3(z - 3) + t(t + 2) + 2(t + 2)
= (z - 3)2 + (t + 2)2
3) x2 - 2xy + 2y2 + 2y + 1
(x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - xy - xy + y2) + (y2 + y + y +1)
= x(x - y) - y(x - y) + y(y + 1) + (y + 1)
= (x - y)2 + (y + 1)2
1)a)x2+10x+26+y2+2y
=(x2+10x+25)+(y2+2y+1)
=(x+5)2+(y+1)2
b)x2-2xy+2y2+2y+1
=(x2-2xy+y2)+(y2+2y+1)
=(x-y)2+(y+1)2
c)z2-6z+13+t2+4t
=(z2-6z+9)+(t2+4t+4)
=(z-3)2+(t+2)2
d)4x2+2z2-4xz-2z+1
=(4x2-4xz+z2)+(z2-2z+1)
=(2x-z)2+(z-1)2
2)a)(x-3)2-4=0
<=>(x-3-2)(x-3+2)=0
<=>(x-5)(x-1)=0
<=>x-5=0 hoặc x-1=0
<=>x=5 hoặc x=1
b)x2-2x=24
<=>x2-2x-24=0
<=>(x2-6x)+(4x-24)=0
<=>x(x-6)+4(x-6)=0
<=>(x-6)(x+4)=0
<=>x-6=0 hoặc x+4=0
<=>x=6 hoặc x=-4
a) x^2 + 10x + 26 + y^2 + 2y
=x2+10x+25+y2+2y+1
=x2+2.x.5+52+y2+2.y.1+12
=(x+5)2+(y+1)2
b)x^2 - 2xy + 2y^2 + 2y +1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
c)z^2 - 6z + 13 + t^2 + 4t
=z2-6z+9+t2+4z+4
=z2-2.z.3+32+t2+2.t.2+22
=(z-3)2+(t+2)2
d)4x^2 + 2z^2 - 4xz - 2z + 1
=4x2-4xz+z2+z2-2z+1
=(2x)2-2.2x.z+z2+z2-2z.1+12
=(2x-z)2+(z-1)2
a) hình như phải là 2x^2 chứ
b) \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
tách 2y^2 =y^2 +y^2 nha
c) \(z^2-6z+13+t^2+4t=\left(z^2-6z+9\right)+\left(t^2+4t+4\right)=\left(z-3\right)^2+\left(t+2\right)^2\)
tách 13 = 9+4
d)\(4x^2+2z^2-4xz-2z+1=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)=\left(4x-z\right)^2+\left(z-1\right)^2\)
cũng tách 2z^2 = z^2 + z^2
a) \(x^2+10x+26+y^2+2y\)
\(=x^2+2.5x+25+1+y^2+2y\)
\(=\left(x^2+2.5x+25\right)+\left(1+2y+y^2\right)\)
\(=\left(x+5\right)^2+\left(1+y\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2xy+y^2+y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+13+t^2+4t\)
\(=z^2-2.3z+9+4+t^2+4t\)
\(=\left(z^2-2.3x+9\right)+\left(4+4t+t^2\right)\)
\(=\left(z-3\right)^2+\left(2+t\right)^2\)
d) \(4x^2+2z^2-4xz-2z+1\)
\(=4x^2+z^2+z^2-4xz-2z+1\)
\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
a) \(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+13+t^2+4t\)
\(=\left(z^2-6x+9\right)+\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2+\left(t+2\right)^2\)
d) \(4x^2-2z^2-2xz-2z+1\)
\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)