Tìm x , biết
\(\left(\frac{1}{64}\right)^x\) = \(\left(-\frac{1}{8}\right)^{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
Áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rút gọn rồi quy đồng làm nốt
ĐKXĐ:\(x\ne\left\{-2;-4;-8;-14\right\}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow2\left(x+8\right)\left(x+14\right)+4\left(x+2\right)\left(x+14\right)+6\left(x+2\right)\left(x+4\right)=x\left(x+8\right)\left(x+14\right)\)
\(\Leftrightarrow2x^2+44x+224+4x^2+64x+112+6x^2+36x+48=x^3+22x^2+112x\)
\(\Leftrightarrow12x^2+144x+384=x^3+22x^2+112x\)
\(\Leftrightarrow x^3+22x^2-12x^2+112x-144x-384=0\)
\(\Leftrightarrow x^3+10x^2-32x-384=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2+16x+64\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+8\right)^2=0\)
\(\Leftrightarrow x=6\)(x=-8 loại vì x=-8 thì PT không xác định)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}-\frac{1}{x+8}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{\left(x+16\right)-\left(x+2\right)}{\left(x+2\right)\left(x+16\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x+16-x-2=x\)
\(\Rightarrow x=14\)
a) \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right).\left(x+14\right)}-\frac{x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{16}{\left(x+2\right).\left(x+4\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow x=16\)
Vậy x = 16
\(b,\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(vì\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
\(\text{Vậy }x=-1\)
a) \(14:\frac{0,4x+0,6}{x}=7\)
\(\frac{0,4x+0,6}{x}=2\)
0,4x + 0,6 = 2.x
2x - 0,4x = 0,6
1,6x = 0,6
x = 0,375
b) \(\left(160\%+\frac{2}{3}x-x\right).12=660\)
\(\left(160\%+\frac{2}{3}x-x\right)=55\)
\(x\left(\frac{2}{3}-1\right)=53,4\)
\(-\frac{1}{3}x=\frac{267}{5}\)
\(x=\frac{267}{5}.\frac{3}{-1}\)
\(x=-160,2\)
c) \(1:\frac{1.2.3.4.....31}{2.2.2.3.2.4.....2.32}=2^x\)
\(1:\frac{1.2.3.4.....31}{2^{31}.2.3.4.....31.2^5}=2^x\)
\(1:\frac{1}{2^{36}}=2^x\)
\(2^{36}=2^x\)
\(x=36\)
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
\(\left(\frac{1}{64}\right)^x=\left(-\frac{1}{8}\right)^{14}\)
\(\left(\frac{1}{64}\right)^x=\left[\left(-\frac{1}{8}\right)^2\right]^7\)
\(\left(\frac{1}{64}\right)^x=\left(\frac{1}{64}\right)^7\)
\(\Rightarrow x=7\)