Tính
\(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+6\sqrt{3}}{\sqrt{3}}-\frac{13}{\sqrt{3}+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
Trả lời:
\(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+6\sqrt{3}}{\sqrt{3}}-\frac{13}{\sqrt{3}+4}\)
\(=-\frac{\sqrt{3}.\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\frac{\sqrt{3}.\left(\sqrt{3}+6\right)}{\sqrt{3}}-\frac{13.\left(\sqrt{3}-4\right)}{3-16}\)
\(=-\sqrt{3}+\sqrt{3}+6-\frac{13.\left(\sqrt{3}-4\right)}{-13}\)
\(=-\sqrt{3}+\sqrt{3}+6+\sqrt{3}-4\)
\(=\sqrt{3}+2\)
Câu 1 khai phương, rút gọn, quy đồng rồi tính được kết quả là 8+\(\sqrt{3}\)
Nói tóm lại là áp dụng các công thức biến đổi đơn giản và quy đồng là ra hết. Làm câu 2 với câu 3 trước ấy, 2 câu đấy dễ hơn.
\(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+6\sqrt{3}}{\sqrt{3}}-\frac{13}{\sqrt{3}+4}\)
\(=\frac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{\sqrt{3}\left(\sqrt{3}+6\right)}{\sqrt{3}}-\frac{4^2-\left(\sqrt{3}\right)^2}{\sqrt{3}+4}\)
\(=-\sqrt{3}+6+\sqrt{3}-\left(4-\sqrt{3}\right)\)
\(=-\sqrt{3}+6+\sqrt{3}-4+\sqrt{3}=\sqrt{3}+2\)
a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)
\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)
\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)
b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)
c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)
\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)
\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)
\(=\dfrac{\sqrt{1\cdot4}}{2}\)
\(=\dfrac{2}{2}\)
\(=1\)
\(=\frac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{\sqrt{3}\left(\sqrt{3}+6\right)}{\sqrt{3}}-\frac{13}{\sqrt{3}+4}\)
\(=-\sqrt{3}+\sqrt{3}+\sqrt{6}-\frac{13}{\sqrt{3}+4}\)
\(=\sqrt{6}-\frac{13}{\sqrt{3}+4}=\frac{\sqrt{6}\left(\sqrt{3}+4\right)-13}{\sqrt{3}+4}=\frac{3\sqrt{2}+4\sqrt{6}-13}{\sqrt{3}+4}\)