K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Ta có: \(\widehat{DBI}=\widehat{IBC}\)(gt)

mà \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

nên \(\widehat{DBI}=\widehat{DIB}\)

hay ΔDIB cân tại D

Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, IE//BC)

mà \(\widehat{ECI}=\widehat{ICB}\)(gt)

nên \(\widehat{EIC}=\widehat{ECI}\)

hay ΔEIC cân tại E

30 tháng 9

cảm ơn nha

 

23 tháng 9 2021

\(a,\) Các hình thang \(BDEC;BDIC;BIEC\)

\(b,DE//BC.nên.\widehat{B_1}=\widehat{I_1}\left(so.le.trong\right)\)

Mà \(\widehat{B_1}=\widehat{B_2}\left(t/c.phân.giác\right)\) nên \(\widehat{B_2}=\widehat{I_1}\Rightarrow\Delta DIB\) cân tại D

\(\Rightarrow DI=DB\left(1\right)\)

\(DE//BC.nên.\widehat{C_1}=\widehat{I_2}\left(so.le.trong\right)\)

Mà \(\widehat{C_1}=\widehat{C_2}\left(t/c.phân.giác\right)\) nên \(\widehat{C_2}=\widehat{I_2}\Rightarrow\Delta IEC\) cân tại E

\(\Rightarrow EI=EC\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow DI+IE=BD+EC\\ \Rightarrow DE=BD+CE\left(Đpcm\right)\)

b: Xét ΔDBI có 

\(\widehat{DBI}=\widehat{DIB}\)

nên ΔDBI cân tại D

Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)

nên ΔEIC cân tại E

Ta có: DE=DI+IE

nên DE=DB+EC

Vậy: BDEC là hình thang có một cạnh đáy bằng tổng hai cạnh bên

9 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Đường thẳng đi qua I song song với BC cắt AB tại D và AC tại E, ta có các hình thang sau: BDEC, BDIC, BIEC

29 tháng 6 2017

Hình thang