K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

2 tháng 5 2019

Giả sử I(xI;yI) là trung điểm của AC

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Vì tam giác ABC cân tại B nên BI ⊥ AC. Phương trình đường thẳng BI đi qua I(2;2) nhận Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) làm VTPT là:

2.(x - 2) + 6.(y - 2) = 0 ⇔ 2x - 4 + 6y - 12 = 0 ⇔ 2x + 6y - 16 = 0 ⇔ x + 3y - 8 = 0

Tọa độ giao điểm B của BI và d là nghiệm của hệ phương trình:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Phương trình đường thẳng AB đi qua A(1;-1) nhận Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) làm VTPT là:

23.(x - 1) - 1.(y + 1) = 0 ⇔ 23x - 23 - y - 1 = 0 ⇔ 23x - y - 24 = 0

⇒ a = 23; b = -1

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Phương trình đường thẳng BC đi qua C(3;5) nhận Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) làm VTPT là:

19.(x - 3) + (-13).(y - 5) = 0 ⇔ 19x - 57 - 13y + 65 = 0 ⇔ 19x - 13y + 8 = 0

⇒ c = 19; d = -13

⇒ a.b.c.d = 23.(-1).19.(-13) = 5681

 

Vậy a.b.c.d = 5681.

30 tháng 11 2018

15 tháng 5 2017

Đáp án A.

Đường tròn (C) có tâm K(-1;2) và bán kính R = 3

Vậy phương trình đường thẳng D là 

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{5}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)

Giao điểm của d và (C) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm

b, Gọi H là trung điểm AB.

Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)

Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)

\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)

Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)

\(\Rightarrow\widehat{HBI}=30^o\)

Khi đó: 

\(IH=d\left(I;\Delta\right)\)

\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)

\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)

\(\Leftrightarrow m=5\pm5\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)

d: 4x-3y+5=0

=>VTPT là (4;-3) và (d) đi qua A(1;3)

=>VTCP là (3;4)

PTTS là:

x=1+3t và y=3+4t

=>N(3t+1;4t+3)

NM=1

=>\(\sqrt{\left(3t+1+1\right)^2+\left(4t+3-2\right)^2}=1\)

=>9t^2+12t+4+16t^2+8t+1=1

=>25t^2+20t+4=0

=>(5t+2)^2=0

=>t=-2/5

=>N(-1/5;-3/5)