K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

4 tháng 9 2019

NV
21 tháng 4 2021

(C) là đường tròn tâm \(I\left(2;-3\right)\) bán kính \(R=5\)

\(\overrightarrow{DI}=\left(1;-4\right)\Rightarrow ID=\sqrt{17}< R\Rightarrow\) D là 1 điểm thuộc miền trong đường tròn

Gọi H là hình chiếu vuông góc của I lên \(\Delta\Rightarrow\) H là trung điểm AB

Theo định lý Pitago: \(AH^2=IA^2-IH^2=R^2-IH^2\Leftrightarrow\dfrac{1}{4}AB^2=25-IH^2\)

\(\Rightarrow AB\) đạt min khi và chỉ khi IH đạt max

Mặt khác trong tam giác vuông IDH, theo định lý đường xiên-đường vuông góc ta luôn có:

\(IH\le ID\Rightarrow IH_{max}=ID\) khi H trùng D \(\Leftrightarrow\Delta\perp ID\)

\(\Rightarrow\) đường thẳng \(\Delta\) nhận (1;-4) là 1 vtpt

Phương trình \(\Delta\):

\(1\left(x-1\right)-4\left(y-1\right)=0\Leftrightarrow x-4y+3=0\)

\(\Rightarrow\left\{{}\begin{matrix}b=-4\\c=3\end{matrix}\right.\)

NV
10 tháng 4 2021

Đường thẳng delta ở đây đóng vai trò là gì bạn?

 

15 tháng 5 2017

Đáp án A.

Đường tròn (C) có tâm K(-1;2) và bán kính R = 3

Vậy phương trình đường thẳng D là 

2 tháng 5 2019

Giả sử I(xI;yI) là trung điểm của AC

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Vì tam giác ABC cân tại B nên BI ⊥ AC. Phương trình đường thẳng BI đi qua I(2;2) nhận Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) làm VTPT là:

2.(x - 2) + 6.(y - 2) = 0 ⇔ 2x - 4 + 6y - 12 = 0 ⇔ 2x + 6y - 16 = 0 ⇔ x + 3y - 8 = 0

Tọa độ giao điểm B của BI và d là nghiệm của hệ phương trình:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Phương trình đường thẳng AB đi qua A(1;-1) nhận Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) làm VTPT là:

23.(x - 1) - 1.(y + 1) = 0 ⇔ 23x - 23 - y - 1 = 0 ⇔ 23x - y - 24 = 0

⇒ a = 23; b = -1

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)

Phương trình đường thẳng BC đi qua C(3;5) nhận Đề thi Học kì 2 Toán 10 có đáp án (Đề 3) làm VTPT là:

19.(x - 3) + (-13).(y - 5) = 0 ⇔ 19x - 57 - 13y + 65 = 0 ⇔ 19x - 13y + 8 = 0

⇒ c = 19; d = -13

⇒ a.b.c.d = 23.(-1).19.(-13) = 5681

 

Vậy a.b.c.d = 5681.