Khai triển các hằng đẳng thức:
a)(3x+2)3 =
b)(\(\frac{x}{4}\)-2)3=
c)x3-\(\frac{1}{8}\)=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
\(F=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\\=\left[\left(3x+2\right)^2+2.\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\right]\\ =\left[\left(3x+2\right)+\left(3x-2\right)\right]^2\\ =\left(6x\right)^2=36x^2\\ Thay.x=-\dfrac{1}{3}.vào.F.thu.gọn:\\ F=36x^2=36.\left(-\dfrac{1}{3}\right)^2=36.\left(\dfrac{1}{9}\right)=4\)
a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)
b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)
c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)
d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)
e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)
f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)
a) \(=4x^2-12x+9\)
b) \(=4x^2+2x+\dfrac{1}{4}\)
c) \(=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)
a) Áp dụng công thức nhị thức Newton, ta có:
\(\begin{array}{l}{\left( {a - \frac{b}{2}} \right)^4} = C_4^0.{a^4}{\left( { - \frac{b}{2}} \right)^0} + C_4^1.{a^3}\left( { - \frac{b}{2}} \right) + C_4^2.{a^2}{\left( { - \frac{b}{2}} \right)^2} + C_4^3.a{\left( { - \frac{b}{2}} \right)^3} + C_4^4.{a^0}{\left( { - \frac{b}{2}} \right)^4}\\ = {a^4} - 2{a^3}b + \frac{3}{2}{a^2}{b^2} - \frac{1}{2}a{b^3} + \frac{1}{16}{b^4}\end{array}\)
b) Áp dụng công thức nhị thức Newton, ta có:
\(\begin{array}{l}{\left( {2{x^2} + 1} \right)^5} = C_5^0.{\left( {2{x^2}} \right)^5}{.1^0} + C_5^1.{\left( {2{x^2}} \right)^4}.1 + C_5^2.{\left( {2{x^2}} \right)^3}{.1^2} + C_5^3.{\left( {2{x^2}} \right)^2}{.1^3} + C_5^4.\left( {2{x^2}} \right){.1^4} +C_5^5.{\left( {2{x^2}} \right)^0} {.1^5}\\ = 32{x^{10}} + 80{x^8} + 80{x^6} + 40{x^4} + 10{x^2} + 1\end{array}\).
\(\left(3x-2\right)^3=\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=27x^3-54x^2+36x-8\)
\(8x^3-27=\left(2x\right)^3-3^3=\left(2x-3\right)\left[\left(2x\right)^2+2x.3+3^2\right]=\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+x^2.3+3^2\right]=x^6-27\)
a\(=\frac{1}{4}x^2+2.\frac{1}{2}x.1+1=\frac{1}{4}x^2+x+1\)
b\(=4x^2-2.2x.\frac{1}{3}+\frac{1}{9}=4x^2-\frac{4}{3}x+\frac{1}{9}\)
Bạn học tốt nha >>>>>>
nha
a/\(\left(\frac{1}{2}x+1\right)^2=\frac{1}{4}x^2+x+1^2\)
b/\(\left(2x-\frac{1}{3}\right)^3=8x^3-2x+\frac{2}{3}x-\frac{1}{27}\)
k nha
\(a\)) \(\left(3x+2\right)^3\)
= \(9x^3\)+\(54x^2\)+\(36x\)+8
\(b\)) \(\left(\frac{x}{4}-2\right)^3\)
=\(\frac{x^3}{64}\)\(-\)\(\frac{3x^2}{8}\)\(+\)\(3x\)\(-\)8
\(c\)) \(x^3-\frac{1}{8}\)
=\(\left(x-\frac{1}{2}\right)\left(x^2+\frac{x}{2}+\frac{1}{4}\right)\)