Cho tam giác ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB, AC. Chứng minh rằng:
a)EB.FC=(AB/AC)3
b) BC.BE.CF = AH3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA
b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC
câu b bạn tham khảo ở đây
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-goi-ef-theo-thu-tu-la-hinh-chieu-cua-h-tren-ab-aca-chung-minh-bcabcdot-sincaccdot-coscb-chung-minh-afcdot-ac2efcdot-bccdot-aecchung-minh.1076798870119
a) \(HF\parallel AB\) \(\Rightarrow\dfrac{HF}{AB}=\dfrac{CF}{CA}\Rightarrow\dfrac{HF}{CF}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{HF}{CF}.\dfrac{AB^2}{AC^2}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF}{CF}.\dfrac{BH.BC}{CH.BC}=\dfrac{AB^3}{AC^3}\)
\(\Rightarrow\dfrac{HF.BH}{CF.CH}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF.BH}{CH}.\dfrac{1}{CF}=\dfrac{AB^3}{AC^3}\left(1\right)\)
Ta có: \(HF\parallel AB\)\(\Rightarrow\angle CHF=\angle CBA\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle CHF=\angle CBA\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{BH}=\dfrac{HF}{HC}\Rightarrow BE.HC=HF.BH\)
\(\Rightarrow BE=\dfrac{HF.BH}{HC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{BE}{CF}=\dfrac{AB^3}{AC^3}\)
Cho tam giác ABC vuông tại A. Đường cao AH. kẻ HE vuông góc AB, Hf vuông góc AC. Cmr: AH^2= BC.BE.CF
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(HB\cdot HC=AH^2\left(1\right)\)
Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=HA^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Gợi ý: A F E ^ = A H E ^ (tính chất hình chữ nhật và A H E ^ = A B H ^ (cùng phụ B H E ^ )
a. Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu: Tam giác AHB có \(HB^2=BE\cdot BA,\) tam giác AHC có
\(HC^2=CF\cdot CA\to\frac{BE}{FC}\cdot\frac{AB}{AC}=\frac{HB^2}{HC^2}=\frac{\left(HB\cdot BC\right)^2}{\left(HC\cdot BC\right)^2}=\frac{AB^4}{AC^4}\to\frac{BE}{CF}=\frac{AB^3}{AC^3}.\)
b.
Cách giải lớp 9
Ta có \(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\cos B\cdot\cos C\cdot\left(\frac{HB}{AH}+\frac{HC}{AH}\right)=\cos B\cdot\cos C\cdot\left(\tan B+\tan C\right)\)
\(=\sin B\cdot\cos C+\cos B\cdot\sin C=\sin^2B+\cos^2B=1.\) (Ở đây chú ý rằng \(\cos B=\sin C,\sin B=\cos C\) ).
Suy ra \(BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^2\cdot AH=AH^3.\)
Cách giải lớp 8
\(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\frac{BA}{BC}\cdot\frac{CA}{BC}\cdot\frac{BC}{AH}=\frac{AB\cdot AC}{BC\cdot AH}=1\to BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^3.\)