abcd=1 Tính
\(\frac{a}{abc+ab+a+1}=\frac{b}{bcd+bc+b+1}=\frac{c}{acd+cd+c+1}=\frac{d}{abd+ad+d+1}\)
các bn giúp mk nhé
1 h 30 là ik hok oy
Thanks các bn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{abd}{abcd^2+abcd+abd+ad}+\frac{abcd}{a^2bcd^2+abcd^2+abcd+abd}+\frac{d}{abd+ad+d+1}\)
\(=\frac{ad}{abd+ad+d+1}+\frac{abd}{abd+ad+d+1}+\frac{1}{abd+ad+d+1}+\frac{d}{abd+ad+d+1}\)
\(=\frac{abd+ad+d+1}{abd+ad+d+1}=1\)
a)
Tam giác DAB có IO // AB nên
\(\frac{IO}{AB}=\frac{DI}{DA}\) (hệ quả của định lý Talet)
Tam giác ACD có OI // CD nên
\(\frac{OI}{CD}=\frac{AI}{AD}\) (hệ quả của định lý Talet)
Ta có: \(\frac{IO}{AB}+\frac{OI}{CD}=\frac{DI}{DA}+\frac{AI}{AD}=\frac{DI+AI}{DA}=\frac{DA}{DA}=1\)
=> \(OI\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)
b)
Tam giác CAB có OK // AB nên
\(\frac{OK}{AB}=\frac{CK}{CB}\) (hệ quả của định lý Talet)
mà \(\frac{CK}{CB}=\frac{DI}{DA}\)
=> \(\frac{OK}{AB}=\frac{DI}{DA}\)
mà \(\frac{DI}{DA}=\frac{OI}{AB}\) (chứng minh trên)
=> \(\frac{OK}{AB}=\frac{OI}{AB}\)
=> OK = OI
mà \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)
c)
O là trung điểm của IK (OK = OI)
=> IK = 2OK
Ta có: \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2OK}\)
=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\)
sai đề
kia ko pải là = đâu mà pải là cộng chứ bn NTMH