Cho a,b thuộc Z ,b khác 0. So sánh 2 số hữu tỉ a/b và a+2001/b+2001.
/ là phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(a+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì \(b>0\)nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh \(ab+2001a\)với \(ab+2001b\)
- Nếu \(a< b\)\(\Rightarrow\)tử số phân số thứ nhất\(< \)phân số thứ hai.
\(\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
- Nếu \(a=b\Rightarrow\)hai phân số bằng nhau \(=1\)
- Nếu \(a>b\)\(\Rightarrow\)tử số phân số thứ nhất \(>\)tử số phân số thứ hai.
\(\Rightarrow\)\(\frac{a}{b}>\frac{a+2001}{b+2002}\)
ỦNG HỘ NHA CÁC THÁNH ONLINE MATH
THANKS NHIỀU
\(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
cái này trong violympic toán lớp 7 vòng 1
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a + 2001/b + 2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)
\(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)
*TH1: a=b
=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
*TH2: a<b
=>ab+2001a<ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH3:a>b
=>ab+2001a>ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> \(\frac{a}{b}<\frac{a+2001}{b+2001}\)
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)};\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{b\left(b+2001\right)}=\frac{ab+2001b}{b\left(b+2001\right)}\)
với a=b \(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
với a<b \(\Rightarrow\frac{ab+2001a}{b\left(b+2001\right)}<\frac{ab+2001b}{b\left(b+2001\right)}\Rightarrow\frac{a}{b}<\frac{a+2001}{b+2001}\)
với a>b \(\Rightarrow\frac{ab+2001a}{b\left(b+2001\right)}>\frac{ab+2001b}{b\left(b+2001\right)}\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
yên tâm bài này tối qua tớ đc olm chọn đấy
Số chia hết cho 2 và chia cho 5 dư 3 thì chữ số tận cùng là 8. Ta được a678
Để a678 chia hết cho 9 thì a=6
Số cần tìm là: 6678
ĐS: 6678
Để so sánh hai số hữu tỉ a/b và a+2001/ b+ 2001, ta so sánh hai vế a(b+2001) và b(a+2001)
Xét hiệu: a(b+2001) - b(a+2001) = ab + a2001 - (ab+ b2001) = 2001(a-b)
Ta có 3 trường hợp với b>0:
Trường hợp 1: a-b=0 =>a=b hay ta có a(b+2001)/ b(b+ 2001) = b(a+2001)/ b(b+ 2001) => a/b = a+2001/ b+ 2001
Trường hợp 2: a-b>0 =>a>b hay ta có a(b+2001)/ b(b+ 2001) > b(a+2001)/ b(b+ 2001) => a/b > a+2001/ b+ 2001
Trường hợp 3: a-b<0 =>a<b hay ta có a(b+2001)/ b(b+ 2001) < b(a+2001)/ b(b+ 2001) => a/b < a+2001/ b+ 2001
+Xét a(b+2001) =ab + 2001a
b(a+2001) = ab + 2001b
Ta xét 3 trường hợp sau:
+ Nếu a>b => 2001a > 2001b
=> a(b+2001) > b(a+2001)
=> a/b > a+2001/b+2001
+Nếu a<b => 2001a < 2001b
=> a(b+2001) < b(a+2001)
=> a/b < a+2001/b+2001
+Nếu a=b => 2001a = 2001b
=> a(b+2001) = b(a+2001)
=> a/b = a+2001/b+2001