K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

a) Minium: \(-\frac{121}{24}\)

b) Maxium: \(\frac{9}{8}\)

20 tháng 8 2016

Là sao z bn? Bn có thể làm rõ cho mk dc ko

a; \(A=2x+6x^2-3-9x\)

\(=6x^2-7x-3\)

\(=6\left(x^2-\dfrac{7}{6}x-\dfrac{1}{2}\right)\)

\(=6\cdot\left(x^2-2\cdot x\cdot\dfrac{7}{3}+\dfrac{49}{6}-\dfrac{26}{3}\right)\)

\(=6\left(x-\dfrac{7}{3}\right)^2-52\ge-52\forall x\)

Dấu '=' xảy ra khi x=7/3

b: \(B=3+12x-2x-8x^2\)

\(=-8x^2+10x+3\)

\(=-8\left(x^2-\dfrac{5}{4}x-\dfrac{3}{8}\right)\)

\(=-8\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{53}{8}\right)\)

\(=-8\left(x-\dfrac{5}{2}\right)^2+53\le53\forall x\)

Dấu '=' xảy ra khi x=5/2

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

16 tháng 8 2018

BÀI 1:

a)  \(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)

Vậy MIN   \(A=2\)khi \(x=-1\)

b)  \(B=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy MIN   \(B=\frac{3}{4}\)khi    \(x=-\frac{1}{2}\)

c)  \(C=2x^2+3x-1=2\left(x+\frac{3}{4}\right)^2-\frac{17}{8}\ge-\frac{17}{8}\) 

Vậy MIN   \(C=-\frac{17}{8}\)khi     \(x=-\frac{3}{4}\)

d)  \(D=4x^2-x=\left(2x-\frac{1}{4}\right)^2-\frac{1}{16}\ge-\frac{1}{16}\)

Vậy  MIN  \(D=-\frac{1}{16}\)khi    \(x=\frac{1}{8}\)

23 tháng 12 2017

\(A=\frac{2x+3y}{2x+y+2}\)

\(\Leftrightarrow A\left(2x+y+2\right)=2x+3y\)

\(\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\)

\(\Leftrightarrow\left(2A\right)^2=\left(2x\left(1-A\right)+y\left(3-A\right)\right)^2\le\left(4x^2+y^2\right)\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)

\(\Leftrightarrow\left(2A\right)^2\le\left(\left(1-A\right)^2+\left(3-A\right)^2\right)\)

\(\Leftrightarrow-5\le A\le1\)

23 tháng 12 2017

Chết em ấn nhầm nút rồi