Cho A = 1+ \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\) .
Chứng minh rằng: A < 1\(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
Bạn làm tương tự như thế này nhé! http://olm.vn/hoi-dap/question/72512.html
Ta có
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow A< 1\frac{3}{4}-\frac{1}{2016}< 1\frac{3}{4}\)
=> đpcm
Đề bài này kì quặc thật... đáng lẽ mẫu phải được bình phương lên mới t/m A ko phải số tự nhiên
Mong bạn xem lại đề bài
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(< 1-\frac{1}{2016}< 1\left(đpcm\right)\)
bài này hình như có nguoif đăg rùi mà