Cho n số x1 , x2 , x3,...,xn có giá trị là 1 hoặc -1. Biết: x1.x2+x2.x3+...+ xn.x1=0
CMR: n\(⋮\)4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$
Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$
Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$
Tổng số số hạng: $n=k+k=2k$
Lại có:
$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$
$\Rightarrow k$ chẵn
$\Rightarrow n=2k\vdots 4$
Lời giải:
Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$
Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng
$\Rightarrow n$ chia hết cho $2$
Mặt khác:
\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$
$\Rightarrow \frac{n}{2}$ chẵn
$\Rightarrow n$ chia hết cho $4$ (đpcm)
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên.
Bạn tham khảo link:
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Từ giả thiết suy ra các tích x1.x2 , x2x3 , ... , xnx1 chỉ nhận một trong hai giá trị là 1 và (-1) . Mà x1.x2 + x2x3 + ... + xnx1 = 0 => n = 2m
Đồng thời có m số hạng bằng 1 , m số hạng bằng -1
Nhận thấy \(\left(x_1x_2\right)\left(x_2x_3\right)...\left(x_nx_1\right)=x_1^2.x_2^2.x_3^2...x_n^2=1\)
=> Số các số hạng bằng -1 phải là số chẵn => m = 2k
Do đó n = 4k => \(n⋮4\)
n=2k mà