Tìm x:
x/2=y/3x2=y/3và x−2y=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\dfrac{1}{2}:y=\dfrac{8}{5}\\ \dfrac{7}{2}:y=\dfrac{8}{5}\\ y=\dfrac{7}{2}:\dfrac{8}{5}\\ y=\dfrac{7}{2}\times\dfrac{5}{8}\\ y=\dfrac{35}{16}\)
Vậy `y=35/16`
Bài làm:
Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
\(\Rightarrow\hept{\begin{cases}x^2=25\\y^2=9\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm5\\y=\pm3\end{cases}}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)
x2 - y2 = 16 <=> ( 5k )2 - ( 3k )2 = 16
<=> 25k2 - 9k2 = 16
<=> 16k2 = 16
<=> k2 = 1
<=> k = ±1
Với k = 1 => \(\hept{\begin{cases}x=5\\y=3\end{cases}}\)
Với k = -1 => \(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Vậy ( x ; y ) = { ( 5 ; 3 ) , ( -5 ; -3 ) }
\(3x^2+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2x\left(x+y\right)-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Leftrightarrow y=x+1\)
Thế vào \(x\left(x+y\right)=1\)
\(\Rightarrow x\left(2x+1\right)=1\)
\(\Leftrightarrow2x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{12}\) = \(\frac{y}{3}\) = \(\frac{x-y}{12-3}\) \(\frac{36}{9}\) = 4
=> \(\frac{x}{12}\) = 4 => x= 12.4= 48
\(\frac{y}{3}\) = 4 => y= 3.4= 12
Chúc bn học tốt
Ta có: \(\frac{x}{12}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{x-y}{9}\)
Mà \(x-y=36\)(theo bài cho)
\(\Rightarrow\frac{x}{12}=\frac{y}{3}=\frac{36}{9}=4\)
+\(\frac{x}{12}=4\Leftrightarrow x=4.12=48\)
+\(\frac{y}{3}=4\Leftrightarrow y=4.3=12\)
Vậy \(\hept{\begin{cases}x=48\\y=12\end{cases}}\)
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
ta có x/5 = y/3 => (x/5)2 = (y/3)2 => x2/25 = y2/9 = x2-y2 / 25-9 = 4/16 = 1/4
=> x=5/2 ; y=3/2
Đặt \(\frac{x}{5}=\frac{y}{3}=k\left(k\ne0\right)\Rightarrow\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)
Thay x = 5k và y = 3k vào biểu thức \(x^2-y^2=4\)ta được:
\(\left(5k\right)^2-\left(3k\right)^2=4\)
\(25k^2-9k^2=4\)
\(16k^2=4\)
\(k^2=\frac{4}{16}=\frac{1}{4}\)
\(k^2=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow k=\frac{1}{2}\)hay \(k=-\frac{1}{2}\)
Trường hợp 1:
Thay \(k=\frac{1}{2}\)vào biểu thức \(\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)ta được:
\(\Rightarrow\hept{\begin{cases}x=5\cdot\frac{1}{2}\\y=3\cdot\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{3}{2}\end{cases}}\)
Trường hợp 2:
Thay \(k=-\frac{1}{2}\)vào biểu thức \(\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)ta được:
\(\Rightarrow\hept{\begin{cases}x=5\cdot\left(-\frac{1}{2}\right)\\y=3\cdot\left(-\frac{1}{2}\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{3}{2}\end{cases}}\)
\(a,=18x^4-24x^3+30x\\ b,=3x^2y+6xy^2+x^2-6xy^2-12y^3-2xy=3x^2y+x^2-12y^3-2xy\\ c,=-3x^2+4xy-2x\\ d,=\left(x-y\right)^2\left[4\left(x-y\right)^3+2\left(x-y\right)-3\right]:\left(x-y\right)^2\\ =4\left(x-y\right)^3+2\left(x-y\right)-3\)
a: \(=18x^4-24x^3+30x^2\)
b: \(=3x^2y+6xy^2+x^2-6xy^2-12y^3-2xy\)
\(=x^2-12y^3+3x^2y-2xy\)
Ta có : \(\frac{x}{2}=\frac{y}{3};x-2y=8\)
Áp dung tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3};\frac{x-2y}{2-2.3}=\frac{8}{-4}=-2\)
\(\Leftrightarrow\begin{cases}x=-2.2\\y=-2.3\end{cases}\Leftrightarrow\begin{cases}x=-4\\y=-6\end{cases}\)
Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}\) và x-2y=8
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{x-2y}{2-2.3}=\frac{8}{-4}=-2\)
Vậy x=-4, y=-6
^...^ ^_^