tìm GTNN của biểu thức S= ab+\(\dfrac{1}{ab}\) biết a,b > 0 và a+b ≤ 1
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge a+b+c\)
\(\Rightarrow6=a+b+c+ab+bc+ac\le\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\)
Đặt \(\sqrt{3\left(a^2+b^2+c^2\right)}=t\Rightarrow a^2+b^2+c^2=\frac{t^2}{3}\)
\(\Rightarrow t+\frac{t^2}{3}\ge6\Leftrightarrow3t+t^2-18\ge0\Leftrightarrow\left(t-3\right)\left(t+6\right)\ge0\)
\(\Rightarrow t-3\ge0\Rightarrow t\ge3\)( vì t + 6 > 0 )
\(\Rightarrow P\ge a^2+b^2+c^2=\frac{t^2}{3}\ge3\)
Vậy GTNN của P là 3 khi a = b = c = 1
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
\(A=\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\\ =\dfrac{2}{a^2+b^2}+\dfrac{2}{2ab}+\dfrac{34}{ab}+\dfrac{17ab}{8}-\dfrac{ab}{8}\\ =2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+17\left(\dfrac{2}{ab}+\dfrac{ab}{8}\right)-\dfrac{ab}{8}\\ \overset{AM-GM}{\ge}2\cdot\dfrac{1}{a^2+b^2+2ab}+17\sqrt{\dfrac{2}{ab}\cdot\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{2}{\left(a+b\right)^2}+\dfrac{17}{2}-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{2}{4^2}+\dfrac{17}{2}-\dfrac{4^2}{32}=\dfrac{65}{8}\)
Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}\dfrac{2}{ab}=\dfrac{ab}{8}\\a^2+b^2=2ab\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)
Vậy \(A_{Min}=\dfrac{65}{8}\) khi \(a=b=2\)
\(\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+17\cdot2\sqrt{\dfrac{2}{ab}+\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{8}{\left(a+b\right)^2}+17-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{8}{4^2}+17-\dfrac{4^2}{32}=17\)
Vậy \(A_{Min}=17\) khi \(a=b=c=2\)
Làm lại :v
\(\dfrac{a}{1+b}+\dfrac{b}{1+a}+\dfrac{1}{a+b}\)
\(\ge\dfrac{a}{a+2b}+\dfrac{b}{2a+b}+\dfrac{1}{a+b}\)
\(=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{2ab+b^2}+\dfrac{1}{a+b}\)
\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+2ab}+\dfrac{1}{a+b}\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+\dfrac{\left(a+b\right)^2}{2}}+\dfrac{1}{a+b}\)
\(=\dfrac{\left(a+b\right)^2}{\dfrac{3}{2}\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{3}+\dfrac{1}{a+b}\ge\dfrac{2}{3}+1=\dfrac{5}{3}\)
\("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Thật ra bài này t đã làm rồi,mà méo rảnh đi mò link,bạn rảnh thì có thể tìm nhé
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cô - si ta có:
\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)
\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)
Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)
⇔ \(a=b=0,5\)
GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)
S=\(ab+\dfrac{1}{ab}\)
Ta có :
Áp dụng BĐT Cauchy(cô-sy),ta có
1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)
Đặt x=ab(x\(\le\dfrac{1}{4}\))
\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)
Áp dụng BĐT Cauchy (Cô -si):
\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)
Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)