Cho tam giác ABC vuông tại A; AB = 5cm, góc C = 30 độ, M là trung điểm AC, G là trọng tâm tam giác ABC
a, Tính AC, BC, góc B
b, Tính AM
c, Tính BG, GM, GN
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan

30 tháng 4 2019
Hình bạn tự vẽ nha
Giải
Ta có tam giác BAE:
BI là đường cao(BI vuông góc AE)
Mà BI cũng là đường phân giác của góc ABE(gt)
Suy ra tam giác ABE cân tại B
Suy ra AB=BE(cặp cạnh tương ứng)
Xét tam giác ABD và tam giác BED có
Góc ABD=góc EBD(BD là đường phân giác)
AB=BE(chứng minh trên)
BD chung
Suy ra tam giác ABD = tam giác EBD(c-g-c)
Mà tam giác ABD là tam giác vuông (góc A =90°)
Nên tam giác EBD cũng là tam giác vuông(điều phải chứng minh)

T
3 tháng 11 2018
A B C H D Hình mang tính chất minh họa.
ΔAHD vuông tại H
=> \(\widehat{HAD}+\widehat{D_1}=90^o\)
=> \(\widehat{D_1}\)=75o
ΔDAB có:\(\widehat{B}+\widehat{D_1}+\widehat{BAH}=180^o\)
=> \(\widehat{B}=60^o\)(cái này bạn tự tính nha) ΔABC vuông tại A =>\(\widehat{B}+\widehat{C}=90^o\) => \(\widehat{C}\)=30O Vậy ..................... Mình làm hơi tắt, thông cảm
a) Ta có : AC = AB/tanC = 5/tan30o = \(5\sqrt{3}\) (cm)
BC = AB/sinC = 5/sin30o = 10 (cm)
góc B = 90 độ - góc C = 90 độ - 30 độ = 60 độ
b) AM = 1/2AC = \(\frac{1}{2}.5\sqrt{3}=\frac{5\sqrt{3}}{2}\) (cm)
c) Ta tính được : \(MB=\sqrt{AM^2+AB^2}=\sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2+5^2}=\frac{5\sqrt{7}}{2}\) (cm)
\(\Rightarrow BG=\frac{2}{3}BM=\frac{2}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{3}\) (cm)
\(GM=\frac{1}{3}BM=\frac{1}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{6}\left(cm\right)\)
N ở đâu ???