K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

a) Xét \(\Delta=5^2-4\left(3m-1\right)=-12m+29\)

Để pt có nghiệm thì \(\Delta\ge0\) , tức là \(-12m+29\ge0\Leftrightarrow m\le\frac{29}{12}\)

Khi đó : \(\begin{cases}x_1=\frac{-5-\sqrt{29-12m}}{2}\\x_2=\frac{-5+\sqrt{29-12m}}{2}\end{cases}\)

b) Xét : \(\Delta'=6^2-2.\left(-15m\right)=30m+36\)

Để pt có nghiệm thì \(\Delta\ge0\) , tức là \(30m+36\ge0\Leftrightarrow m\ge-\frac{6}{5}\)

Khi đó : \(\begin{cases}x_1=\frac{-6-\sqrt{30m+36}}{2}\\x_2=\frac{-6+\sqrt{30m+36}}{2}\end{cases}\)

28 tháng 10 2022

a: \(\text{Δ}=5^2-4\left(3m-1\right)=25-12m+4=-12m+29\)

Phương trình có hai nghiệm phân biệt khi -12m+29>0

=>-12m>-29

=>m<29/12

Để phương trình có nghiệm duy nhất thì -12m+29=0

=>m=29/12

Để phương trình vô nghiệm thì -12m+29<0

=>m>29/12

b: \(\text{Δ}=12^2-4\cdot2\cdot\left(-15m\right)=144+120m\)

Để phương trình có hai nghiệm pb thì 120m+144>0

=>m>-6/5

Để phương trình có nghiệm duy nhất thì 120m+144=0

=>m=-6/5

Để phương trình vô nghiệm thì 120m+144<0

=>m<-6/5

c: \(\text{Δ}=\left(2m-2\right)^2-4m^2=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì -8m+4>0

=>-8m>-4

=>m<1/2

Để pt có nghiệm duy nhất thì -8m+4=0

=>m=1/2

Để pt vô nghiệm thì -8m+4<0

=>m>1/2

31 tháng 12 2018

15 tháng 8 2016

a)x2+5x+3m-1

  • Pt có 2 nghiệm trái dấu khi 

\(\Delta>0\Leftrightarrow m< \frac{29}{12}\).pt có 2 nghiệm phân biệt

\(x_{1,2}=\frac{5\pm\sqrt{29-12m}}{2}\)

  • Pt có 2 nghiệm âm phân biệt khi 

\(\begin{cases}\Delta\ge0\\p=1\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m\ge0\\3m-1=1\end{cases}\)\(\Leftrightarrow m=\frac{2}{3}\left(tm\right)\)

  • Pt có 2 nghiệm dương phân biệt khi

\(\begin{cases}\Delta>0\\p=\frac{c}{a}>0\\S=\frac{b}{a}>0\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m>0\\3m-1>0\\5>0\left(\text{đúng}\right)\end{cases}\)\(\Leftrightarrow\frac{1}{3}< m< \frac{29}{12}\)

 

 

 

 

15 tháng 8 2016

b và c tương tự

 

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

27 tháng 1 2022

a) \(x-2=0\Leftrightarrow x=2\)

b) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

e) \(2x^2+5x+3=0\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)

f) \(x^2-x-12=0\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

27 tháng 1 2022

em ghi sai đề câu a nên anh làm lại đc ko, cám ơn anh ạ.

 

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

13 tháng 3 2023

\(a,\sqrt{x^2-5x-1}=\sqrt{x-1}\)

Bình phương 2 vế pt , ta có :

\(x^2-5x-1=x-1\)

\(\Rightarrow x^2-5x-x=-1+1\)

\(\Rightarrow x^2-6x=0\)

\(\Rightarrow x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Thay lần lượt các giá trị trên vào pt, ta thấy \(x=6\) (thỏa)

Vậy pt có tập nghiệm \(S=\left\{6\right\}\)

13 tháng 3 2023

loading...