K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=x.5x-x.3-x^2.x+x^2.1+x.x^2-x.6x-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2+10+3x\)

\(=-10\)

Biểu thức trên kết quả là -10 => ĐPCM

15 tháng 8 2016

\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

=\(5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

=\(\left(x^3-x^3\right)+\left(5x^2+x^2-6x^2\right)+\left(-3x+3x\right)-10\)

=-10

=> ĐPCM

6 tháng 6 2018

A/ x(5x-3)-x^2(x-1)+x(x^2-6x)-10+3x

=> A=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x

=> A=(x^3-x^3)+(5x^2+x^2-6x^2)+(3x-3x)-10

=> A=   0         +          0               +     0   -10

=> A=-10

Vậy giá trị ko phụ thuộc vào biến.

B/x(x^2+x+1)-x^2(x+1)-x+5

=> B=x^3+x^2+x-x^3-x^2-x+5

=> B=            0                    +5

=> B=                      5.

UNDERSTAND !!!

6 tháng 6 2018

làm đúng rồi sao bảo sai

26 tháng 4 2017

a, \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

=\(\left(5x^2+x^2-6x^2\right)+\left(3x-3x\right)+\left(x^3-x^3\right)-10\)

=-10

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

b, \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

=\(x^3+x^2+x-x^3-x^2-x+5\)

=\(\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)

= 5

Vậy biểu thức trên không phụ thuộc vào biến x .

9 tháng 10 2017

a, x(5x - 3 ) - x2 ( x - 1 ) + x(x2 - 6x ) - 10 + 3x

= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x

= ( 5x2 + x2 - 6x2 ) + ( -3x + 3x ) + ( -x3 + x3 ) - 10

= -10

Vậy giá trị biểu thức a không phụ thuộc vào phần biến

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))

5 tháng 9 2016

khó ghê

giúp tớ nhé

tớ bị trừ 590 điểm

cảm ơn trước 

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

25 tháng 5 2022

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3x^2-3x\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+8\right)+3x^2-3x\\ =x^3-3x^2+3x-1-x^3-8+3x^2-3x\\ =-9\)

Vậy biểu thức không phụ thuộc vào giá trị của biến

11 tháng 6 2018

\(=x^2+2x-3x-6+x^2-1-x^2+\frac{1}{2}x+\frac{1}{2}x-\frac{1}{4}-x^2\)

\(=\left(x^2+x^2-x^2-x^2\right)+\left(2x-3x+\frac{1}{2}x+\frac{1}{2}x\right)+\left(-6-1-\frac{1}{4}\right)\)

\(=\frac{-29}{4}\)

Vậy...

15 tháng 8 2016

\(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x.x^2+x.x+x.1-x^2.x-x^2.1-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5\)

\(=5\)

Biểu thức kết quả là 5 => ĐPCM

15 tháng 8 2016

\(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5=x^3+x^2+x-x^3-x^2-x+5=5\)