Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm của BC, mặt phẳng (SAC) tạo với đáy (ABC) một góc 600 . Tính thể tích hình chóp S.ABC và khoảng cách từ điểm I đến mặt phẳng (SAC) theo a, trong đó I là trung điểm SB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
ta có: d ( I , ( S A B ) ) = 1 2 d ( C , ( S A B ) )
lại có: d ( C , ( S A B ) ) = 3 V S A B C S Δ A B C
gọi M là trung điểm AB, khi đó góc giữa mp(SAB) và mp(ABC) là góc S M H ^
khi đó: S H = H M . tan 60 o = a 3 2
V S A B C = a 3 3 12 ; S A B C = a 2 2 ⇒ d ( C , ( S A B ) ) = a 3 2 ⇒ d ( I , ( S A B ) ) = a 3 4
Đáp án D
Góc giữa cạnh SA và đáy là S A F ^ ,
Vì tam giác ABC và SBC là tam giác đều cạnh a nên ta có
Vậy
Nhận xét
Gọi (α) là mặt phẳng qua SM và song song với AB.
Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.
Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.
+ Xác định khoảng cách.
Qua N kẻ đường thẳng d’ song song với AB.
Gọi (P) là mặt phẳng đi qua SN và d’.
Ta có: AB // (P).
Khi đó: d(AB, SN) = d(A, (P)).
Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:
d(AB, SN) = d(A, (SND)) = AH.
Trong tam giác SAD, ta có
Trong tam giác SAB, ta có S A = A B . tan 60 o = 2 a 3 và AD = MN = BC/2 = a.
Thế vào (1), ta được
Đáp án B
Ta có tam giác HBM đồng dạng với tam giác CBA nên
Xét tam giác vuông SHC có
Gọi H, J lần lượt là trung điểm của BC, AC.
Ta có : \(\begin{cases}SH\perp\left(ABC\right)\\HJ\perp AC\end{cases}\) \(\Rightarrow AC\perp SJ\)=> SJH = 60 độ
\(AB=\frac{BC}{\sqrt{2}}=a\sqrt{2};HJ=\frac{AB}{2}=\frac{\sqrt{2a}}{2};SH=HJ.\tan60^o=\frac{a\sqrt{6}}{2}\)
Ta có : \(V_{S.ABC}=\frac{1}{3}SH\frac{AB.AC}{2}=\frac{1}{6}.\frac{\sqrt{6}}{2}.\left(\sqrt{2}\right)^2.a^3=\frac{a^3\sqrt{6}}{6}\)
Gọi E là hình chiếu của H lên SJ, khi đó ta có \(\begin{cases}HE\perp SJ\\HE\perp AC\end{cases}\) \(\Rightarrow HE\perp\left(SAC\right)\)
Mặt khác, do IH SC IH SAC / / (SAC) , suy ra
\(d\left[I,\left(SAC\right)\right]=d\left[H,\left(SAC\right)\right]=HE=HJ.\sin60^o=\frac{\sqrt{6}}{4}a\)
ok chờ tí