Cho tứ giác ABCD có \(C\) + \(D\) = \(90^0\) Gọi M;N;P;Q lần lượt là trung điểm của AB;BD;DC;CA. Chứng minh rằng: 4 điểm M;N;P;Q cùng nằm trên cùng một đường tròn
Giúp mik với!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo tại link:
Câu hỏi của Trần Thị Thảo Ngọc - Toán lớp 9 - Học toán với OnlineMath
https://www.google.com.vn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwiz7t_v7vXcAhWadn0KHXIyAMcQFjAHegQIAxAB&url=https%3A%2F%2Folm.vn%2Fhoi-dap%2Fquestion%2F1014815.html&usg=AOvVaw0h6fXqwysaNQwyYWr3DvPL
Bạn kham khao tại link:
Câu hỏi của Trần Thị Thảo Ngọc - Toán lớp 9 - Học toán với OnlineMath
https://www.google.com.vn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwiz7t_v7vXcAhWadn0KHXIyAMcQFjAHegQIAxAB&url=https%3A%2F%2Folm.vn%2Fhoi-dap%2Fquestion%2F1014815.html&usg=AOvVaw0h6fXqwysaNQwyYWr3DvPL
a: Xét tứ giác ABCM có
AB//CM
AB=CM
Do đó: ABCM là hình bình hành
a: Xét tứ giác ABHD có
\(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90^0\)
=>ABHD là hình chữ nhật
Hình chữ nhật ABHD có AB=AD
nên ABHD là hình vuông
=>AB=BH=HD=DA
mà \(AB=AD=\dfrac{DC}{2}\)
nên \(BH=DH=\dfrac{DC}{2}\)
DH=DC/2
=>H là trung điểm của DC
Xét ΔDBC có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔDBC cân tại B(2)
Xét ΔBDC có
BH là đường trung tuyến
\(BH=\dfrac{DC}{2}\)
Do đó: ΔBDC vuông tại B(1)
Từ (1) và (2) suy ra ΔBDC vuông cân tại B
b: AB=HD
HD=HC
Do đó: AB=HC
Xét tứ giác ABCH có
AB//CH
AB=CH
Do đó: ABCH là hình bình hành
=>AC cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AC
c: \(\widehat{ADI}+\widehat{IAD}=90^0\)(ΔADI vuông tại I)
\(\widehat{ACD}+\widehat{IAD}=90^0\)(ΔADC vuông tại D)
Do đó: \(\widehat{ADI}=\widehat{ACD}\)
mà \(\widehat{ACD}=\widehat{BAC}\)(hai góc so le trong, AB//CD)
nên \(\widehat{BAC}=\widehat{ADI}\)