\(\frac{1}{5^{199}}\) và \(\frac{1}{3^{300}}\)
Hãy so sánh hai phân số trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3^{100}+1}{3^{99}+1}=\frac{\left(3^{99}+1\right)\times3-2}{3^{99}+1}=3-\frac{2}{3^{99}+1}\)
\(B=\frac{3^{99}+1}{3^{98}+1}=\frac{\left(3^{98}+1\right)\times3-2}{3^{98}+1}=3-\frac{2}{3^{98}+1}\)
Do 398 + 1 < 399 + 1
=> \(\frac{2}{3^{98}+1}>\frac{2}{3^{99}+1}\)
=> A > B
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
\(\frac{1}{3^{400}}>\frac{1}{4^{300}}\) vì tử chung mẫu số nào lớn hơn thì bé hơn!!
chắc zậy!!
\(3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(5^{199}< 5^{200}\) mà \(5^{200}=25^{100}\)
\(25^{100}< 27^{100}\Rightarrow3^{300}>5^{200}>5^{199}\)
Trong hai phân số cùng tử nếu mẫu nào lớn hớn thì phân số đó bé hơn.
Vậy : \(\frac{1}{5^{199}}>\frac{1}{3^{300}}\)