Tim n la so nguyen sao cho :
\(\frac{n+7}{3n-1}\) la so nguyen
Nhanh nhe can gap lam do
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để : \(\frac{n+7}{3n-1}\in N\)
Thì n + 7 chia hết cho 3n - 1
<=> 3n + 21 chia hết cho 3n - 1
<=> 3n - 1 + 22 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(22) = {22;11;2;1}
Ta có bảng :
3n - 1 | 22 | 11 | 2 | 1 |
3n | 23 | 12 | 3 | 2 |
n | 4 | 1 |
gọi hai số đó là a và b
ta có 7a.3b=21=> (a.b) .(7.3) =21=> a.b = 21:21=> a.b= 1 ma tất cả các số nhân với 1 sẽ bằng 1 nên sẽ không có tổng bình phương
nhấn vào đây: Câu hỏi của ngô trà my - Toán lớp 6 - Học toán với OnlineMath
nó sẽ giải đáp cho bn!! 546766589769978087235643664645645756756756878
Có A = \(\frac{2n-1}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)
Để A nguyên
=> \(\frac{7}{n+3}\) nguyên => 7 chia hết cho n + 3
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
A=2 (n + 3 ) - 7 / n+ 3
để A là số nguyên suy ra 7 chia hết cho n+ 3
suy ra n+ 3 thuộc ước của 7
suy ra n+3 thuộc 1;-1;7;-7
suy ra n thuộc -2;-4;4;-10
Vì \(\frac{3n+2}{4n-5}\) là số tự nhiên => \(4.\frac{3n+2}{4n-5}\) => \(\frac{12n+8}{4n-5}\) là số tự nhiên :
Thực hiện phép chia :
12n + 8 4n - 5 3 12n - 15 - 23
=> \(\frac{12n+8}{4n-5}=3+\frac{23}{4n-5}\)
Để \(3+\frac{23}{4n-5}\) là số tự nhiên <=> \(\frac{23}{4n-5}\) là số tự nhiên
=> 4n - 5 \(\in\) Ư(23) = { -23;-1;1;23 }
Ta có : 4n - 5 = - 23 => 4n = - 18 => n = - 9/2 ( loại )
4n - 5 = - 1 <=> 4n = 4 => n = 1 (TM)
4n - 5 = 1 => 4n = 6 => n = 3/2 (loại)
4n - 5 = 23 => 4n = 28 => n = 7 (TM)
Vậy n = { 1; 7 }
Đặt A=(3n+2)/(4n-5)
Để A là số tự nhiên thi
3n+2 chia hết cho 4n-5
4(3n+2)chia hết cho 4n-5
12n+8 chia hết cho 4n-5
12n-15+8+15 chia hết cho
4n-5
23chia hết cho 4n-5
=>4n-5 thuộc Ư(23)
4n-5 thuộc {1;23;-1;-23}
4n thuộc{6;28;4;-18}
n thuộc{7;1}
Để \(\frac{n+7}{3n-1}\)là số nguyên thì n + 7 phải chia hết cho 3n - 1
=> 3(n + 7) - 22 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 thuộc {1 ; 2 ; 11 ; 22}
=> 3n thuộc {2 ; 3 ; 12 ; 23}
=> n thuộc {1 ; 4}