tìm x biết:
1/3.4+1/4.5+1/5.6+1/6.7+....+1/x(x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/3-1/4+1/4-1/5+1/5-.......+1/x.(x+1)=3/10
1/3-1/x+1=3/10
tự làm...
1/3.4+1/4.5+1/5.6+1/6.7+....+1/x(x+1)=3/10
<=> \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(x+1\right)x}=\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
<=> \(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)=> x+1=30=>x=29
\(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)
\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{1}{30}\)
\(\Rightarrow x+1=30\)
\(x=30-1=29\)
1/3.4+1/4.5+1/5.6+.....+1/x(x+1)=3/10
1/3-1/4+1/4-1/5+1/5-........-1/x+1/x-1/x+1=3/10
=>1/3-1/x+1=3/10
1/x+1=3/10-1/3=1/30
=>x+1=30
x=30-1
x=29
Ta có :
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)
=>\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
=>\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
=>\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)
=>\(\frac{1}{x+1}=\frac{1}{30}\)
=>\(x+1=30\)
=>\(x=30-1\)
=>\(x=29\)
Vậy \(x=29\)
Theo đề suy ra
\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
=> \(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)
=>x+1=30
=>x=29
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}-\dfrac{1}{5\cdot6}-\dfrac{1}{6\cdot7}-\dfrac{1}{7\cdot8}-\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{2}-\dfrac{1}{9}\right)\)
`=`\(\dfrac{1}{3}-\dfrac{7}{18}=-\dfrac{1}{18}\)
ta phân tích thành
\(\frac{1}{1\cdot2}\)x\(\frac{2\cdot2}{2\cdot3}\)x\(\frac{3\cdot3}{3\cdot4}\)x......x\(\frac{5\cdot5}{5\cdot6}\)x\(\frac{6\cdot6}{6\cdot7}\)
Tử nhân tử mẫu nhân mẫu ta có
1x2x2x3x3x.........x5x5x6x6
1x2x2x3x3x4x....x5x6x6x7
Rút gọn ta có
\(\frac{1}{7}\)
Vậy A=\(\frac{1}{7}\)
\(\frac{1}{3.4}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{3}-\frac{1}{x+1}\)
\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+1}\)
\(=\frac{1}{3}-\frac{1}{x+1}\)