Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab=\left(a,b\right).\left[a,b\right]=18.270=4860\)
Đặt \(a=18m,b=18n\), \(1< m< n,\left(m,n\right)=1\).
\(ab=18m.18n=324mn=4860\Leftrightarrow mn=15\)
suy ra \(\hept{\begin{cases}m=3\\n=5\end{cases}}\Rightarrow\hept{\begin{cases}a=54\\b=90\end{cases}}\)
Vì a<b và a.b = 18 Vậy a.b = 2.9 = 1.18= 3.6
Ta xét các TH sau đây:
TH1: 2= 2; 9= 32
BCNN ( 2,9)= 2. 32= 18 ( loại)
TH2: 1=1 18= 2.32
BCNN ( 1,18)= 1.2.32= 18( loại)
TH3: 3=3; 6=3.2
BCNN( 3,6)= 3.2=6 (loại)
Vậy sau 3 TH không có một TH nào thỏa mãn => Không tìm được ab
Ta có : BCNN(a,b) . ƯCLN(a;b) = a.b
=> a.b = 270 . 18
=> a.b = 4860 (1)
Vì ƯCLN(a;b) = 18
=> Đặt\(\hept{\begin{cases}a=18m\\b=18n\end{cases}}\left(m;n\inℕ^∗;\text{ƯCLN(m;n)}=1\right)\)(2)
Thay (2) vào (1) ta có
=> 18m.18n = 4860
=> mn = 15
Với \(m;n\inℕ^∗\)ta có : 15 = 3.5 = 1.15
=> Lập bảng xét 4 trường hợp ta có :
m | 1 | 15 | 3 | 5 |
n | 15 | 1 | 5 | 3 |
a | 18 | 270 | 54 | 90 |
b | 270 | 18 | 90 | 54 |
Vậy các cặp số (a;b) thỏa mãn bài toán là : (18 ; 270) ; (270;18) ; (54;90) ; (90 ; 54)