Chứng minh bình phương của một số nguyên tố lớn hơn 3 chia 12 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số nguyên tố lớn 3 là:p
Số nguyên tố lớn hơn 3 có dạng là:3k+1,3k+2
Nếu p=3k+1 thì p2=(3k+1)2=3k2+2.3k.1+12=9k2+6k+1=3.(3k2+2k)+1 chia 3 dư 1
Nếu p=3k+2 thì p2=(3k+2)2=3k2+2.3k.2+22=9k2+12k+4=9k2+12k+3+1=3.(3k2+4k+1)+1 chia 3 dư 1
Vậy Bình phương của số nguyên tố lớn hơn 3 chia cho 3 có số dư là 1(đpcm)
Gọi các số nguyên tố đó là A
Ta có:
A khác 2 => A là số lẻ => A2 là số lẻ => A2 chia 2 dư 1 => A2 chia 4 dư 1 => A2 - 1 chia hết cho 4 (Vì A2 là SCP và 2 là số nguyên tố)
A khác 3 => A không chia hết cho 3 => A2 không chia hết cho 3 => A2 chia 3 dư 1 => A2 - 1 chia hết cho 3 (Vì SCP khi chia 3 chỉ dư 0 hoặc 1)
(3; 4) = 1
Từ 3 điều trên => A2 - 1 chia hết cho 3.4 = 12
=> A2 chia 12 dư 1 (ĐPCM)
gọi số đó là a^2(a là số nguyên tố khác 2 và 3 )
Do a là số nguyên tố khác 2 nên a lẻ. Suy ra a^2 lẻ. Suy ra a^2 chia 4 dư 1
Suy ra a^2-1 chia hết cho 4 .1
Do a là số nguyen tố khác 3 nên a không chia hết cho 3. Suy ra a^2 không chia hết cho 3
Suy ra a^2 chia 3 dư 1. Suy ra a^2-1 chia hết cho 3.2
Từ 1 và 2 suy ra a^2-1 chia hết cho 3 vá 4 mà (3,4)=1 nên a^2 -1 chia hết cho 12
Vậy a^2 chia 12 dư 1
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
bn ni cũng chưa lm đc à - me too