Tìm.n.Biết
n+4 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.2n-4 chia hết cho n+2<=>2n+4-8 chia hết cho n+2
<=>2(n+2)-8 chia het cho n+2
<=>8 chia hết cho n+2
<=> n+2 thuộc ước của 8
còn lại tự tính nha
những câu hỏi khác cũng tương tự
tick nha
a) n + 5 \(⋮\) n - 1 <=> (n - 1) + 6 \(⋮\) n - 1
=> 6 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 \(\in\) Ư(6) = \(\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Đến đây tự làm tiếp nhé!
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
Để n+5 chia hết cho n-1 thì n-1 phải thuộc Ư(n+5)
Để 2m+4 chia hết cho n+2 thì n+2 phải thuộc Ư(2n+4)
Để 6n+4 chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(6n+4)
Để 3-2n chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(3-2n)
a/ \(n+5⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow6⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=3\\n-1=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\\n=3\\n=4\\n=7\end{matrix}\right.\)
Vậy ...
b/ \(2n-4⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n-4⋮n+2\\2n+4⋮n+2\end{matrix}\right.\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+2=1\\n+2=2\\n+2=4\\n+2=8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-1\\n=0\\n=2\\n=6\end{matrix}\right.\)
Vậy ...
Làm tiếp 2 phần sau.
c) \(6n+4⋮2n+1\)
\(\Leftrightarrow3\left(2n+1\right)+1⋮n+1\)
Vì \(3\left(2n+1\right)⋮2n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) |
\(n\) | \(-2\) | \(0\) |
Vậy...
d) \(3-2n⋮n+1\)
\(\Leftrightarrow3-2\left(n+1\right)-2⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(\left(3+2\right)⋮n+1\Rightarrow n+1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(n\) | \(-2\) | \(0\) | \(-6\) | \(4\) |
Vậy...
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
n+4 chia hết cho 2n - 1
<=> 2(n+4) chia hết cho 2n - 1
<=> 2n+8 chia hết cho 2n - 1
<=> (2n+8) - (2n+1) chia hết cho 2n - 1
<=> 7 chia hết cho 2n - 1
\(\Rightarrow2n+1\inƯ_7\)
\(\Rightarrow2n+1\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n\in\left\{1;4;0;-3\right\}\)
Vậy \(n\in\left\{1;4;0;-3\right\}\)