Tìm x biết: -8/15< x/15 < -2//15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-4+x=-4+7\)
\(\Rightarrow x=-4+7+4\)
\(\Rightarrow x=7\)
\(\left(-3\right)-\left(-5-x\right)=-15+\left(-6+15\right)\)
\(\Rightarrow x=-15-6+15+3-5\)
\(\Rightarrow x=-8\)
\(-\left(x+2\right)+2=\left(8-15\right)+15\)
\(\Rightarrow-x+2+2=-7+15\)
\(\Rightarrow-x=-7+15-2-2\)
\(\Rightarrow x=-4\)
\(4+\left(x-4\right)=-\left(11-2\right)+\left(11+4\right)\)
\(\Rightarrow4+x-4=-11+2+11+4\)
\(\Rightarrow x=-11+2+11+4-4+4\)
\(\Rightarrow x=6\)
a) -4 + x = -4 + 7 b) (-3) - (-5-x) = -15 + (-6+15)
-4 + x + 4 - 7 = 0 (-3) + 5 + x = -6
x - 7 = 0 2 + 6 = -x
x= 7 8 = -x
Vậy x= 7 x= -8 =) Vậy x= -8
c) -(x+2)+2=(8-15)+15 d) 4+(x-4)= -(11-2) + (11+4 )
-x - 2 + 2 = 8 4+x-4 = 6
-x = 8 x=6
x= -8 Vậy x=6
Vậy x= -8
Bài 1:
a) \(=\dfrac{8}{15}\left(\dfrac{7}{13}+\dfrac{6}{13}\right)=\dfrac{8}{15}.1=\dfrac{8}{15}\)
b) \(=\dfrac{3.3-7-2.4}{12}=-\dfrac{6}{12}=-\dfrac{1}{2}\)
Bài 2:
\(\dfrac{x}{2,7}=-\dfrac{2}{3,6}\Rightarrow x=\dfrac{\left(-2\right).2,7}{3,6}\Rightarrow x=-\dfrac{3}{2}\)
Bài 3:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=-\dfrac{21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).5=-10\end{matrix}\right.\)
8/15 - 2/15 : x = 0,2
2/15 : x = 8/15 - 0,2
2/15 : x = 1/3
x = 2/15 : 1/3
x = 2/5
em làm ngược lại thoi
2/15 : x = 8 /15 - 0,2
x = 2/15:( 8 /15 - 0,2)
\(a,\left|15+x\right|+x=-15\)
\(\Rightarrow\left|15+x\right|=-15-x\)
\(\Rightarrow\left|15+x\right|=-\left(15+x\right)\)
Vì \(\left|15+x\right|\ge0\forall x;-\left(15+x\right)\le0\forall x\)
\(\Rightarrow15+x=-15-x=0\Rightarrow x=-15\)
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
a) x - 15 = 7 + (-2)
x-15 = 5
x=20
b) | x - 5 | = 15 + (-8)
I x - 5 I = 7
1) x-5 = 7 => x = 12
2) x-5 = -7 => x= -2
Vậy x=12 hoặc x=-2
c) I x | - 25 = 45 + (-15)
I x | - 25 = 30
I xI = 55
Vậy x= 55 hoặc x=-55
a) x - 15 = 7 + ( - 2 )
x - 15 = 5
x = 5 + 15
x = 20
b) | x - 5 | = 15 + ( - 8 )
| x - 5 | = 7
=> x = 7 + 5
x = 12
c) | x | - 25 = 45 + ( - 15 )
| x | - 25 = 30
=> | x | = 30 + 25
| x | = 55
=> x = 55
\(-\frac{8}{15}< \frac{x}{15}< -\frac{2}{15}\)
=> \(-8< x< -2\)
=> \(x\in\left\{-7;-6;-5;-4;-3\right\}\)
Ta có : \(\frac{-8}{15}< \frac{x}{15}< \frac{-2}{15}\)
\(\Rightarrow-8< x< -2\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
Vậy \(x\in\left\{-7;-6;-5;-4;-3\right\}\)