K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2015

\(\frac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\frac{48x^3}{3x^5}}=\sqrt{\frac{16}{x^2}}=\frac{4}{x}\)

16 tháng 8 2016

a)\(\frac{\sqrt{63y^3}}{\sqrt{7}y}=\frac{\sqrt{7\cdot3^2\cdot y^2\cdot y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot\sqrt{3^2}\cdot\sqrt{y^2}\cdot\sqrt{y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot3\cdot y\cdot\sqrt{y}}{\sqrt{7}y}=3\sqrt{y}\)

b)\(\frac{\sqrt{48x^3}}{\sqrt{3x^5}}=\frac{\sqrt{4^2\cdot3\cdot x^2\cdot x}}{\sqrt{3\cdot x^2\cdot x^3}}=\frac{\sqrt{4^2}\cdot\sqrt{3}\cdot\sqrt{x^3}}{\sqrt{3}\cdot\sqrt{x^2}\cdot\sqrt{x^3}}=\frac{4}{x}\)

c)\(\frac{\sqrt{45mn^2}}{\sqrt{20m}}=\frac{\sqrt{5\cdot3^2\cdot m\cdot n^2}}{\sqrt{5\cdot2^2\cdot m}}=\frac{\sqrt{5}\cdot\sqrt{3^2}\cdot\sqrt{m}\cdot\sqrt{n^2}}{\sqrt{5}\cdot\sqrt{2^2}\cdot\sqrt{m}}=\frac{3\left|n\right|}{2}\)

d)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\frac{\sqrt{4^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}{\sqrt{4^2\cdot8\cdot a^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}=\frac{\sqrt{4^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}{\sqrt{4^2}\cdot\sqrt{8}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}=\frac{4\cdot a^2\cdot b^3}{4\cdot\sqrt{8}\cdot\left|a\right|^3\cdot b^3}=\frac{a^2}{\sqrt{8}\left|a\right|^3}\)

 

 

30 tháng 5 2017

a. \(\sqrt{\dfrac{63y^3}{7y}}\)=\(\sqrt{9y^2}\)=3y

b.\(\sqrt{\dfrac{48x^3}{3x^5}}\)=\(\sqrt{16\cdot\dfrac{1}{X^2}}\)= \(\sqrt{16}\cdot\sqrt{\dfrac{1}{X^2}}\)=\(4\cdot\dfrac{1}{X}=\dfrac{4}{X}\)

c.\(\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{\sqrt{9n^2}}{\sqrt{4}}=\dfrac{3n}{2}\)

d. \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\sqrt{2}a}\)

19 tháng 9 2017

a) \(\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3y\)

b) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{4}{x}\)

c) \(\dfrac{\sqrt{45mn^2}}{\sqrt{20m}}=\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{3n}{2}\)

d) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\left|a\right|\sqrt{2}}=\dfrac{-1}{2a\sqrt{2}}\)

15 tháng 2 2020

Em mới học lớp 8 nhưng làm thử sai thì thôi nhé !!!

\(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}\)\(-\frac{3x+3}{x-9}\)

\(P=\frac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\sqrt{x}^2-3^2}\)

\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\sqrt{x}^2-3^2}\)

\(p=\frac{-3\sqrt{x}-3}{\sqrt{x}^2-3^2}=\frac{-3.\left(\sqrt{x}+1\right)}{x-9}\)

24 tháng 7 2023

9) Sửa: \(2\sqrt{8\sqrt{3}}-2\sqrt{5\text{ }\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=2\sqrt{2^2\cdot2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{2^2\cdot5\sqrt{3}}\)

\(=2\cdot2\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot2\sqrt{5\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)

10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\)

\(=\sqrt{2^2\cdot3x}-\sqrt{4^2\cdot3x}-3\sqrt{3x}+27\)

\(=2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}+27\)

\(=-5\sqrt{3x}++27\)

11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\)

\(=\sqrt{3^2\cdot2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}+28\)

\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}+28\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)

\(=14\sqrt{2x}+28\)

12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)

\(=\sqrt{3^2\cdot5a}-\sqrt{2^2\cdot5a}+4\sqrt{3^2\cdot5a}+\sqrt{a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+4\cdot3\sqrt{5a}+\sqrt{a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)

\(=13\sqrt{5a}+\sqrt{a}\)

27 tháng 6 2017

a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)

b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)

c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)

\(y\ne0\)

Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)

e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)

Vì y < 0 nên \(\left|y\right|=-y\)

Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)

f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)

29 tháng 7 2018

a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )

29 tháng 7 2018

b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)

                                                         \(=6-3b\) (vì b < 2 )

b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\) 

                                         \(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)