\(\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+.....+\frac{2}{2015.2016}\)
hộ tớ nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết : \(\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{2}{90}+\frac{2}{110}+\frac{2}{132}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(2\left(\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)
\(2\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)
\(2\left(\frac{1}{9}-\frac{1}{\left(x+1\right)}\right)=\frac{1}{9}\)
\(\frac{1}{9}-\frac{1}{\left(x+1\right)}=\frac{1}{18}\)
\(\frac{1}{\left(x+1\right)}=\frac{1}{18}\)
\(x=17\)
a) \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{14}{30}=\frac{7}{15}\)
a)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=2\left(1-\frac{1}{15}\right)\)
\(=2.\frac{14}{15}\)
\(=\frac{28}{15}\)
b)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}+\frac{2}{10.11}+\frac{2}{11.12}\)
\(...\)
#)Giải :
Đặt \(A=\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{x+1}=\frac{1}{9}\)
Đến đây thì ez rùi nhé ^^
Đặt tổng là S
\(\Rightarrow S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow S=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(\Rightarrow S=\left(1+\frac{1}{2}+....+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(\Rightarrow S=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\) (đpcm)
\(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+....+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)(có 92 số 1)
\(=\frac{\frac{8}{9}+\frac{8}{10}+....+\frac{8}{100}}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}\)
\(=8:\frac{1}{5}=40\)
\(B\)\(=\)\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}....+\frac{1}{500}}\)
Tham khảo bài làm bn Đàm đi
Hok tốt
nên xem lại đề pn ạ