A = (1/x-2 + 2x/x2-4 +1/x+2) x ( 2/x - 1)
a) Rút gọn A
b) Tìm x để A=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\neq \pm 2; x\neq 0$
a)
\(A=\left[\frac{x+2}{(x+2)(x-2)}+\frac{2x}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}\right].\frac{2-x}{x}=\frac{x+2+2x+x-2}{(x-2)(x+2)}.\frac{-(x-2)}{x}\)
\(=\frac{4x}{(x-2)(x+2)}.\frac{-(x-2)}{x}=\frac{-4}{x+2}\)
b) Để $A=1\Leftrightarrow \frac{-4}{x+2}=1$
$\Leftrightarrow x+2=-4$
$\Leftrightarrow x=-6$ (thỏa ĐKXĐ)
Vậy $x=-6$
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
a, đề này chắc sai ở đoạn \(\dfrac{2x}{x^2-3}\) sửa thành \(\dfrac{2x}{x-3}\)
\(=>đk:x\ne1,x\ne3\)
\(=>A=\dfrac{2x}{x-3}+\dfrac{2x}{x^2-4x+3}+\dfrac{x}{x-1}\)
\(=\dfrac{2x\left(x-1\right)+2x+x\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{2x^2-2x+2x+x^2-3x}{\left(x-1\right)\left(x-3\right)}\)
\(=\dfrac{3x^2-3x}{\left(x-1\right)\left(x-3\right)}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)
b, \(A=\dfrac{3x}{x-3}=3+\dfrac{9}{x-3}\)
A nguyên <=>\(x-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(=>x\in\left\{4;2;6;0;12;-6\right\}\left(TM\right)\)
a) Ta có: \(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right)\cdot\left(\dfrac{2}{x}-1\right)\)
\(=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)}{x}\)
\(=\dfrac{-4}{x+2}\)
b) Để A=1 thì x+2=-4
hay x=-6(nhận)