Tìm x,y ,z thuộc N
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Cho mình sửa lại đề câu 1b: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
\(\frac{2x-7}{14}=\frac{1}{y+1}\)
\(TH1:\hept{\begin{cases}2x-7=7\\y+1=2\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-7=-7\\y+1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
nhớ cho
Ta có :
\(\frac{10}{7}< \frac{14}{7}=2\Rightarrow x< 2\)
Mà \(x\in N\)
TH1 : \(x=0;\)ta có :
\(\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{7}{10}\)
Mà \(\frac{7}{10}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{7}{10}\)
\(\Rightarrow z=\frac{10}{7}\)
Mà \(\frac{10}{7}\notin N\)
Do đó loại trường hợp này.
TH2 : \(x=1;\)ta có :
\(1+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{10}{7}-1\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{3}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{3}{7}\)
Mà \(\frac{3}{7}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{3}{7}\)
\(\Rightarrow z=\frac{7}{3}\)
Mà \(\frac{7}{3}\notin N\)
Do đó không có x ;y ; z thỏa mãn đề bài .
x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)
Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:
Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)
Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.
Giả sử \(x,y,z\ge3\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(vô lí vì trái với giả thiết bài toán)
Do đó, một trong ba số x,y,z tồn tại ít nhất một số bé hơn 3 , ta giả sử số đó là x
Suy ra : \(x\le y;x\le z\)
Vì \(x\in N^{\text{*}}\)và x < 3 nên x = 1 hoặc x = 2
\(\Rightarrow\left(z-2\right)\left(y-2\right)=4\)
Đến đây , ta xét các trường hợp , được y = z = 4 và y = 3 , z = 6 thỏa mãn .
Vậy : (x;y;z) = (2;3;6) ; (2;4;4)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(x,y\in N,x\ne0,y\ne0\right)\)
Ta có \(\frac{4y}{xy4}+\frac{4\text{x}}{xy4}=\frac{xy}{xy4}\)
\(\Rightarrow\)4y+4x=xy
\(\Rightarrow\)xy-4x-4y=0
\(\Rightarrow\)xy-4x-(4y-16)=16
\(\Rightarrow\)x(y-4)-4(y-1)=16
\(\Rightarrow\)(x-4)(y-4)=16
Vì x,y\(\in N\)nên x-4 thuộc Z;y-4 thuộc Z;x-4 lớn hơn hoặc bằng -3;y-4 lớn hơn hoặc nbằng -3 mà (x-4)(y-4)=16
\(\Rightarrow\)x-4 \(\in\)Ư(16);y-4\(\in\)Ư(16)
Ta có bảng
x-4 1 16 2 8 4
y-4 16 1 8 2 4
x 5 20 6 12 8
y 20 5 12 6 8
z đâu