K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

2. 7n = 49

=> n = 49 : 7

=> n = 7

26 tháng 7 2016

a(b - c - d) - a(b + c - d) 

= ab - ac - ad - ab - ac + ad

= -2ac

=> sai đề ak bn -_-

21 tháng 2 2019

Z+ là tập hợp nào vậy bạn?? Có phải Z ko???

21 tháng 2 2019

Phùng Tuệ Minh Z+ là tập hợp Z nhưng ko chúa số âm , ukm

12 tháng 11 2017

a) 2n+1 và 7n+2

Gọi d là ƯCLN của 2n+1 và 7n+2

Vì 2n+1 chia hết cho d,7n+2 chia hết cho d

TC: 7.(2n+1) chia hết cho d , 2.(7n+2) chia hết cho d

14n+7 chia hết cho d , 14n+14 chia hết cho d

Nên (14n+14)-(14n+7) chia hết cho d

         14n+14-14n+7 chia hết cho d

          7 chia hết cho d

          d=7

   Kết luận

Các câu khác tương tự nhé

23 tháng 9 2021

\(\frac{-6}{n+1}\)

30 tháng 12 2017

Gọi (7n+10;5n+7)=d

\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\\ \Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\Rightarrowđpcm\)

30 tháng 12 2017

a) Theo đề bài ta có:

64a = 80b = 96c ; mà a,b,c nhỏ nhất

\(\Rightarrow\) 64a = 80b = 96c = BCNN(64;80;96)

64 = 26

80 = 24 . 5

96 = 25 . 3

\(\Rightarrow\) BCNN(64;80;96) = 26 . 3 . 5 = 960

\(\Rightarrow\) 64a = 960 \(\Rightarrow\) a = 960 : 64 = 15

80b = 960 \(\Rightarrow\) b = 960 : 80 = 12

96c = 960 \(\Rightarrow\) c = 960 : 96 = 10

Vậy a = 15 ; b = 12 ; c = 10

b) Gọi ƯCLN(7n+10;5n+7) là d ( d \(\in\) N* )

Ta có:

\(\left\{{}\begin{matrix}\left(7n+10\right)⋮d\\\left(5n+7\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\) \(\left\{{}\begin{matrix}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(35n+50\right)⋮d\\\left(35n+49\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\) \(\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow\left(35n+50-35n-49\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy (7n+10) và (5n+7) là hai số nguyên tố cùng nhau ( đpcm )

20 tháng 10 2019

Giả sử 2 trong 5 số ko = nhau.

Dễ thấy số có cơ số nhỏ hơn phải có số mũ lớn hơn.

Giả sử a<b mà \(a^b=b^c\Rightarrow c< b\)

\(b^c=c^d\Rightarrow c< d\)

\(c^d=d^e\Rightarrow e< d\)

\(d^e=e^a\Rightarrow e< a\)

\(e^a=a^b\Rightarrow a>b\)(!)

Vậy a=b=c=d=e(đpcm).

#Walker

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

9 tháng 2 2019

Câu 1.
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) =
= 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)

9 tháng 2 2019

1

Đặt \(A=\dfrac{7n-8}{2n-3}\)

Ta có \(2A=\dfrac{2\left(7n-8\right)}{2\left(2n-3\right)}=\dfrac{14n-16}{2\left(2n-3\right)}=\dfrac{7\left(2n-3\right)+5}{2\left(2n-3\right)}\)

\(=\dfrac{7}{2}+\dfrac{5}{2\left(2n-3\right)}\)

A lớn nhất \(\Leftrightarrow\) 2A lớn nhất \(\Leftrightarrow\dfrac{5}{2\left(2n-3\right)}\) lớn nhất

=> 2n-3 là số dương nhỏ nhất

=> 2n-3 = 1

=> 2n =4

=> n = 2

Thay n = 2 vào A, ta được A = 6

Vậy GTLN của A =6 khi n =2

2)

Ta có p(x) chia hết cho 5 với mọi x nguyên

=> p (0) chia hết cho 5

\(\Leftrightarrow d⋮5\left(1\right)\)

p(1) \(⋮5\)

=> a+b+c+d \(⋮5\)

Mà d chia hết cho 5 => \(a+b+c⋮5\)

p(-1) \(⋮5\)

\(\Rightarrow-a+b-c⋮5\)

Ta có p(1)+p(2) chia hết cho 5

=> a+b+c -a +b-c \(⋮5\)

=> 2b \(⋮5\)

=. b chia hết cho 5 (2)

Vì a+b+c \(⋮5\) , b \(⋮5\)

\(\Rightarrow a+c⋮5\) (*)

Ta có p(2) = 8a+4b+2c+d

p (2) \(⋮5\)

=>8a + 2c chia hết cho 5 (**)

Từ * và ** suy ra a và c đều chia hết cho 5 ( vì 8 và 2 \(⋮̸\)5, muốn 8a+2c \(⋮5\) thì cả a và c đều phải chia hết cho 5) (3)

Từ (1), (2),(3) suy ra ĐPCM

c) Câu này tớ không nhớ :)))