Với giá trị nào của a,b thì (x4+ax2+b)Chia hết cho x2+x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần dư của phép chia đa thức x 4 + a x 2 + 1 chia hết cho x 2 + 2x + 1 là
R = (-4 – 2a)x – a – 2
Để phép chia trên là phép chia hết thì R = 0 ó (-4 – 2a)x – a – 2 = 0 với mọi x
ó - 2 a - 4 = 0 - a - 2 = 0 ó a = -2
Đáp án cần chọn là: A
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)
\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)
\(\Rightarrow a=5\)