Chứng tỏ:
2^2n . (2^2n+3-1)-1 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta thấy 2n+1;2n+2;2n+3 là 3 số tự nhiên liên tiếp
Mà trong 3 stn liên tiếp luôn có 1 số chia hết cho 3.
Vậy 2n+1;2n+2;2n+3 chia hết cho 3
b, 5+52+ ...+512
=(5+52+53)+...+(510+511+512)( 3 số hạng 1 ngoặc)
=(5.1+5.5+5.25)+...+(510.1+510.5+510.25)
=5.(1+5+25)+...+510.(1+5+25)
=5.31+...+510.31
=31.(5+...+531)
Vì 31 chia hết cho 31 =>31.(5+...+510) chia hết cho 31
Vâỵ 5+52+ ...+512 chia hết cho 31
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
\(2^{2n}\left(2^{2n+3}-1\right)-1\\ =4n\left(4n+2^3-1\right)-1\\ =\left(4n.4n+4n.2^3+4n-1\right)-1\\ =\left(16.2n+32n+3nn-1n\right)-1n\\ =65nchiah\text{ết}cho5\)