K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2014

đơn giản thôi , giả sử n lẻ => ( n + 2015 ) chẵn

                        giả sử n chẵn => ( n + 2014 ) chẵn

trong cả 2 trường hợp luân có 1 thừa số chẵn => tích đã cho luân chẵn => nó chia hết cho 2

25 tháng 12 2014

chung minh nhu ngoc lan la dung

4 tháng 7 2021

Ta có m + 2014n \(⋮\)2015

<=> 2015m + 2015n - 2014m - n \(⋮\)2015

<=> 2015(m + n) - (2014m + n) \(⋮\)2015

Vì 2015(m + n) \(⋮\)2015

=> 2014m + n \(⋮\)2015 (1)

mà m + 2014n \(⋮\)2015 (2)

Từ (1) và (2) => (2014m + n)(m + 2014n) \(⋮\)20152

14 tháng 7 2018

Đặt  \(A=\left(n+2014^{2015}\right)\left(n+2015^{2014}\right)\)

  •   \(n=2k\)thì:  \(n+2014^{2015}=2k+2014^{2015}\)\(⋮\)\(2\) \(\Rightarrow\)\(A⋮2\)
  •  \(n=2k+1\)

Ta có:    \(n=2k+1\equiv1\left(mod2\right)\)

             \(2015^{2014}\equiv1\left(mod2\right)\)

\(\Rightarrow\)\(n+2015^{2014}\)\(⋮2\)\(\Rightarrow\)\(A⋮2\)

Vậy  

14 tháng 12 2016

mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp

...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp

mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2

mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập

                             CHÚC MAY MẮN

5 tháng 2 2017

Tuy bài làm của bạn ko giống như bài của cô mình chữa nhưng mình cũng rất cảm ơn bạn nhé Nguyễn Lâm Văn

18 tháng 6 2015

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

18 tháng 6 2015

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

16 tháng 7 2015

Ta có \(2015^{2015}-2015^{2014}=2015^{2014}.2015-2015^{2014}=2015^{2014}.\left(2015-1\right)=2015^{2014}.2014\) chia hết cho 2014 (đpcm).

16 tháng 2 2020

Ta có :\(2015\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}-1\equiv0\left(mod2014\right)\)

hay : \(2015^{2015}-1⋮2014\) (đpcm)

16 tháng 2 2020

\(2015^{2015}-1=2015^{2015}-2015^{2014}+2015^{2014}-2015^{2013}+.....+2015-1\)

\(=\left(2015^{2015}-2015^{2014}\right)+\left(2015^{2014}-2015^{2013}\right)+....+\left(2015-1\right)\)

\(=2015^{2014}.\left(2015-1\right)+2015^{2013}.\left(2015-1\right)+....+\left(2015-1\right)\)

\(=2014.\left(2015^{2014}+2015^{2013}+...+1\right)⋮2014\)

15 tháng 12 2017

Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :

- Tích các số lẻ có chứa các số 11 ; 17 ; 53

- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53

=> Tổng hai tích chia hết cho 9911.

9 tháng 12 2018

hình như bạn viết sai đầu bài phải là 57 mới đúng

9 tháng 12 2018

có 7^2016+7^2015+7^2014

=7^2014(7^2+7+1)

=7^2014.57

SUY RA biểu thức trên luôn chia hết cho 57