K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(B=x^2+2xy^2-3xy-2\)

Thay x=2 và y=3 vào B, ta được:

\(B=2^2+2\cdot2\cdot3^2-3\cdot2\cdot3-2=20\)

Thay x=2 và y=-3 vào B, ta được:

\(B=2^2+2\cdot2\cdot\left(-3\right)^2-3\cdot2\cdot\left(-3\right)-2=56\)

23 tháng 9 2023

\(a,Ư\left(70\right)=\left\{1;2;5;7;10;14;35;70\right\}\\ B\left(7\right)=\left\{0;7;14;21;28;35;42;49;56;63;72;81;90;99;....\right\}\\ \Rightarrow n\in\left\{7;14;35;70\right\}\\ b,Ư\left(225\right)=\left\{1;3;5;9;15;25;45;75;225\right\}\\ B\left(9\right)=\left\{0;9;18;27;36;45;54;63;72;81;...;216;225;234;243;...\right\}\\ \Rightarrow n\in\left\{9;45;225\right\}\)

#include <bits/stdc++.h>

using namespace std;

long long s,i,n;

int main()

{

cin>>n;

s=0;

for (i=1; i<=n; i++)

if (i%3==0) s=s+i;

cout<<s;

return 0;

}

27 tháng 2 2017

Để 4n - 1 chai hết cho 7

Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}

Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}

9 tháng 3 2022

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.