K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

\(1+2\left(x-1\right)\left(x+2\right)-2\left(2x-1\right)^2=3-4\left(2x+3\right)-3\left(x+1\right)\)

<=> \(1+2\left(x^2+x-2\right)-2\left(4x^2-4x+1\right)=3-8x-12-3x-1\)

<=>\(1+2x^2+2x-4-8x^2+8x-2-3+8x+12+3x+1=0\)

<=> \(-6x^2+5x+5=0\)

<=> \(\left[\begin{array}{nghiempt}x=\frac{5+\sqrt{145}}{12}\\x=\frac{5-\sqrt{145}}{12}\end{array}\right.\)

hai nghiệm trên là nghiệm của pt

11 tháng 7 2018

1)

2x.(x-2) - x.(2x+1) = 3

=> 2x2 - 4x - 2x2 - x = 3

=> (2x2 - 2x2 ) - (4x+x) = 3

=> -5x = 3

=> x = \(\dfrac{-3}{5}\)

2) (2x-1).(x-2) - (x+3).(2x-7) = 3

=> 2x2 - 4x - x + 2 - 2x2 + 7x - 6x + 21 = 3

=> (2x2 - 2x2) - (4x + 6x + x - 7x) + 2 + 21 = 3

=> -4x = -20

=> x = -20 : (-4)

=> x = 5

3) (x - 5).(-x + 4) - (x - 1).(x + 3) = -2x2

=> Bạn tách tương tự như mấy câu 2 nhé! Nếu không làm được thì bảo mình

12 tháng 7 2018

mình ko bt làm toán số

20 tháng 3 2020

a)\(\left(x-2\right)^2-\left(x-3\right)\cdot\left(x+3\right)=6\)

\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)

\(\Leftrightarrow7-4x=0\)

\(\Rightarrow x=\frac{-7}{4}\)

b)\(-4\cdot\left(x-1\right)^2+\left(2x-1\right)\cdot\left(2x+1\right)=-3\)

\(\Leftrightarrow-4\cdot\left(x^2-2x+1\right)+4x^2-1+3=0\)

\(\Leftrightarrow-4x^2+8x-4+4x^2-1+3=0\)

\(\Leftrightarrow8x-2=0\)

\(\Rightarrow x=\frac{2}{8}=\frac{1}{4}\)

6 tháng 8 2019

1a) -3x2(2x3 - 2x + 1/3) = -6x5 + 6x3 - x2

b) (x4 + 2x3 - 2/3).(-3x4) = -3x8 - 6x7 + 2x4

c) (x + 3)(x - 4) = x2 - 4x + 3x - 12 = x2 - x - 12

d)(x - 4)(x2 + 4x + 16) = (x - 4)(x2 + 4x + 42) = x3 - 64

e) 4(x - 1/2)(x + 1/2)(4x2 + 1) =4(x2 - 1/4)(4x2  + 1) = 4(4x4 + x2 - x2 - 1/4) = 4(4x4 - 1/4) = 16x4 - 1

B2. a) (2 - x)(x2 + 2x + 4) + x(x - 3)(x + 4) - x2 + 24 = 0

=> 8 - x3 + x(x2 + 4x - 3x - 12) - x2 + 24 = 0

=> 8 - x3 + x3 + x2 - 12x - x2 + 24 = 0

=> -12x + 32 = 0

=> -12x = -32

=> x = -32 : (-12) = 8/3

b) (x/2 + 3)(5 - 6x) + (12x - 2)(x/4 + 3) = 0

=> 5x/2 - 3x2 + 15 - 18x + 3x2 + 36x - x/2 - 6 = 0

=> 20x + 9 = 0

=> 20x = -9

=> x = -9/20

9 tháng 11 2016

bấm máy tính là ra 1,25 bạn nhé

9 tháng 11 2016

cs này là tìm x mà sao bấm máy tính ra dc

6 tháng 10 2019

1) đặt 2x+1 = a => \(a^4-3a^2+2=\left(a^2-1\right)\left(a^2-2\right)=\)\(\left(a-1\right)\left(a+1\right)\left(a-\sqrt{2}\right)\left(a+\sqrt{2}\right)\)

=(2x+1-1)(2x+1+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\)) = 4x(x+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\))

2) =(x2-x)(x2-x-2)-3

đặt x2-x = b => b(b-2)-3 = b2-2b-3 = (b+1)(b-3) = (x2-x+1)(x2-x-3)

3) đặt x2+2x-1 = c => c2-3xc+2x2 = (c-x)(c-2x) = (x2+2x-1-x)(x2+2x-1-2x) = (x2+x-1)(x2-1) = (x2+x-1)(x-1)(x+1)

tìm x

x3-8 +(x-2)(x+1)=0 <=> (x-2)(x2+2x+4)+(x-2)(x+1)=0 <=>(x-2)(x2+2x+4+x+1)=0 <=> x=2 (vì x2+3x+5= (x+\(\frac{3}{2}\))2 +\(\frac{11}{4}\)>0)

vậy x=2 

6 tháng 10 2019

2) \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)-3\)

\(=\left(x^2-x\right)\left(x^2-x-2\right)-3\)(1)

Đặt \(x^2-x=t\)

\(\Rightarrow\left(1\right)=t\left(t-2\right)-3=t^2-2t+1-4\)

\(=\left(t-1\right)^2-4\)

\(=\left(t+3\right)\left(t-5\right)\)

Thay \(x^2-x=t\), ta được:

\(BTDNT=\left(x^2-x+3\right)\left(x^2-x-5\right)\)

16 tháng 4 2021

1/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7-9\right)\left(2+\sqrt{x+3}\right)}{\left(4-x-3\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(2+\sqrt{x+3}\right)}{\left(x-1\right)\left(-\sqrt{2x+7}-3\right)}=\dfrac{2.4}{-6}=-\dfrac{4}{3}\)

2/ \(=\lim\limits_{x\rightarrow1^-}\dfrac{2.1-3}{1-1}=-\infty\)

3/ \(=\lim\limits_{x\rightarrow2^+}\dfrac{3-x}{x-2}=+\infty\)

4/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-\dfrac{8x^3}{x^2}+\dfrac{9x^2}{x^2}+\dfrac{x}{x^2}-\dfrac{1}{x^2}}{\dfrac{5x^2}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-8x}{5}=\pm\infty\)

5/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}}+\dfrac{2x}{x}-\dfrac{1}{x}}{\dfrac{2x}{x}+\dfrac{7}{x}}=\dfrac{1}{2}\)

16 tháng 4 2021

cam on a

NV
18 tháng 4 2021

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)